摘要:
An oil-based masterbatch in the form of granules containing carbon nanotubes. Also, a method for preparing an oil-based masterbatch in the form of granules containing carbon nanotubes. Also, the use of an oil-based masterbatch in the form of granules containing carbon nanotubes for manufacturing an aqueous or organic viscoelastic fluid, intended for drilling in underground formations.
摘要:
An oil-based masterbatch in the form of granules containing carbon nanotubes. Also, a method for preparing an oil-based masterbatch in the form of granules containing carbon nanotubes. Also, the use of an oil-based masterbatch in the form of granules containing carbon nanotubes for manufacturing an aqueous or organic viscoelastic fluid, intended for drilling in underground formations.
摘要:
The present invention relates to a masterbatch in agglomerated solid form comprising: a) carbon nanofibers and/or nanotubes and/or carbon black, the content of which is between 15 wt % and 40 wt %, preferably between 20 wt % and 35 wt %, relative to the total weight of the masterbatch; b) at least one solvent; c) at least one polymer binder, which represents from 1 wt % to 40 wt %, preferably from 2 wt % to 30 wt % relative to the total weight of the masterbatch. The present invention also relates to a concentrated masterbatch, characterized in that it is obtained by eliminating all or part of the solvent from the masterbatch described previously.It also relates to a process for preparing said masterbatches and to the uses of the latter, especially in the manufacture of an electrode or of a composite material for an electrode.
摘要:
Inorganic curable systems, such as cements, plasters, ceramics, or liquid silicates, which can be used, for example, in the fields of building, construction, or the oil-drilling industry. The use of carbon nanofillers for reinforcing the mechanical properties of such systems and for improving the latter. A method for inserting carbon nanofillers, such as carbon nanotubes, in the form of a binder master batch, into an inorganic curable system with a view to preparing composite materials having improved properties.
摘要:
A composite material including, in a polymeric composition, carbon nanotubes combined with particles having an elastomeric core and at least one thermoplastic shell. The composite material including, in a polymer composition, carbon nanotubes associated, so as to form aggregations of less than 30 μm, with particles having a core made of totally or partially crosslinked elastomer and at least one thermoplastic shell, in a weight ratio of the particles of core-shell structure to the nanotubes of between 0.5:1 and 2.5:1. Also, a method for preparing said material, as well as to the use thereof for imparting various properties to polymeric matrices.
摘要:
A method for producing a fibrous material including carbon fibres or glass fibres or plant fibres or polymer-based fibres, that are used alone or in a mixture, and are impregnated by a thermohardenable polymer using a mixture containing a hardener and carbon nanofillers, such as carbon nanotubes (CNT). A mixture containing said nanofillers, such as CNTs, and the hardener is used to introduce said nanofillers into the fibrous material. A continuous production line (L) for producing the material in the form of at least one calibrated and homogeneous strip (20) of reinforcing fibres impregnated with a thermohardenable polymer, includes the device (100) for arranging two series of fibres (1, 2) used to form a strip in such a way as to arrange the two series of fibres such that they are brought into contact with each other by means of two calendering devices.
摘要:
The invention relates to a method for producing a composite material, that comprises: a—preparing a carbon nanotube-based master mixture according to a method that comprises: mixing the carbon nanotubes in the form of a powder and at least one thermoplastic and/or elastomer polymer matrix in the form of a powder, the amount of carbon nanotubes representing from 2 to 30 wt % relative to the total weight of the powdery mixture; and implementing said mixture into an agglomerated solid physical form; and B—placing said master mixture into a thermoplastic and/or elastomer polymer mixture. The invention also relates to the use of the above master mixture for implementing said method.
摘要:
A method for manufacturing a thermoplastic composition including: a polyester resin (c); a mixture including a copolymer (a) of an α-olefin and of a monomer having an ethylenic unsaturation and an epoxy function, as well as a core-shell compound (b); characterized in that said method includes a first step of manufacture the mixture of (a) and (b) by extrusion at a temperature at which the copolymer (a) is in the molten state and at a maximum temperature of 60 to 180° C.; a second step of manufacturing the thermoplastic composition by extrusion or by mixing the polyester resin (c) with the mixture of (a) and (b) produced in the first step.
摘要:
The present invention relates to a composite of carbon nanotubes and of graphenes in agglomerated solid form comprising: a) carbon nanotubes, the content of which represents from 0.1% to 50% by weight, preferably from 10% to 40% by weight relative to the total weight of the composite; b) graphenes, the content of which represents from 0.1% to 20% by weight, preferably from 1% to 10% by weight relative to the total weight of the composite; and c) a polymer composition comprising at least one thermoplastic polymer and/or one elastomer. The present invention also relates to a process for preparing said composite, its use for the manufacture of a composite product, and also to the various applications of the composite product.
摘要:
The subject of the present invention is a process for preparing a precomposite based on nanotubes, comprising bringing said nanotubes into contact with at least one given plasticizing agent.It also relates to a precomposite thus obtained, and to its use for conferring at least one electrical, mechanical and/or thermal property on a polymer material.It also relates to the use of a given plasticizer for improving the dispersion and/or mechanical properties and/or electrical conductivity and/or thermal conductivity of nanotubes in a polymer matrix.