摘要:
A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
摘要:
A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
摘要:
A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
摘要:
A method of forming a polymeric material with a pendant polycyclic aromatic compound precursor includes forming a polycyclic aromatic compound precursor (e.g., a pentacene precursor) including at least one polymerizable functionality, and polymerizing the polymerizable functionality to form the polymeric material with the pendant precursor.
摘要:
A method of placing a functionalized semiconducting nanostructure, includes functionalizing a semiconducting nanostructure including one of a nanowire and a nanocrystal, with an organic functionality including a functional group for bonding to a bonding surface, dispersing the functionalized semiconducting nanostructure in a solvent to form a dispersion, and depositing the dispersion onto the bonding surface.
摘要:
Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
摘要:
A composite material includes a carbon nanotube, and plural pentacene molecules bonded to the carbon nanotube. A method of forming the composite layer, includes depositing on a substrate a dispersion of soluble pentacene precursor and carbon nanotubes, heating the dispersion to remove solvent from the dispersion, heating the substrate to convert the pentacene precursor to pentacene and form the carbon nanotube-pentacene composite layer.
摘要:
A method of forming a polymeric material with a pendant polycyclic aromatic compound precursor includes forming a polycyclic aromatic compound precursor (e.g., a pentacene precursor) including at least one polymerizable functionality, and polymerizing the polymerizable functionality to form the polymeric material with the pendant precursor.
摘要:
A semiconductor device includes a bonding surface, a semiconducting nanostructure including one of a nanowire and a nanocrystal, which is formed on the bonding surface, and a source electrode and a drain electrode which are formed on the nanostructure such that the nanostructure is electrically connected to the source and drain electrodes.
摘要:
The invention is directed to a radiation sensitive compound comprising a surface binding group proximate to one end of the compound for attachment to a substrate, and a metal binding group proximate to an opposite end of the compound. The metal binding group is not radiation sensitive. The radiation sensitive compound also includes a body portion disposed between the surface binding group and the metal binding group, and a radiation sensitive group positioned in the body portion or adjacent to the metal binding group. The surface binding group is capable of attaching to a substrate selected from a metal, a metal oxide, or a semiconductor material.