摘要:
A wireless charging pad includes a capacitively-loaded conducting loop source resonator, with a characteristic size, L1, connected to a switching amplifier and configured to generate an oscillating magnetic field, wherein the conducting loop comprises multiple turns circumscribing an area, the conducting loop does not extend into the center of the circumscribed area, the source resonator delivers useful power to at least one device resonator with a characteristic size, L2, and where L1 is larger than L2.
摘要:
A wireless charging pad includes a capacitively-loaded conducting loop source resonator, with a characteristic size, L1, connected to a switching amplifier and configured to generate an oscillating magnetic field, wherein the conducting loop comprises multiple turns circumscribing an area, the conducting loop does not extend into the center of the circumscribed area, the source resonator delivers useful power to at least one device resonator with a characteristic size, L2, and where L1 is larger than L2.
摘要:
A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
摘要:
A wireless power service panel source includes power and control circuitry that receives power from a wired power connection at a position in a service panel, and generates an electronic drive signal at a frequency, f, and a source magnetic resonator configured to generate an oscillating magnetic field in response to the electronic drive signal, wherein the source magnetic resonator is configured to wirelessly transmit power to sensors in other positions within the service panel.
摘要:
A wireless power source station includes a solar panel generating an output DC voltage, power and control circuitry that receives the output DC voltage and generates an electronic drive signal at a frequency, f, and a source magnetic resonator that generates an oscillating magnetic near field in response to the electronic drive signal for providing power to electronic devices in a region around the solar panel.
摘要:
A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; wherein the square root of the product of the respective Q factors is greater than 100; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
摘要:
A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power an implantable medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, the area circumscribed by the inductive element of at least one of the electromagnetic resonators can be varied to improve performance.
摘要:
A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, at least one other electromagnetic resonator configured with the first electromagnetic resonator and the second electromagnetic resonator in an array of electromagnetic resonators to distribute power over an area, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the array to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
摘要:
Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
摘要:
A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an outdoor lighting unit that draws energy from the load to power a light source associated with the outdoor lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.