摘要:
In preparation for etch processing a semiconductor chip having areas of little or no pattern and areas that are heavily patterned, adding non-operative patterns to the areas having little or no pattern so that the overall pattern density is about the same across the chip.
摘要:
A method is provided for designing a mask layout for an integrated circuit that ensures proper functional interaction among circuit features by including functional inter-layer and intra-layer constraints on the wafer. The functional constraints used according to the present invention are applied among the simulated wafer images to ensure proper functional interaction, while relaxing or eliminating the EPE constraints on the location of the wafer images.
摘要:
A method of designing a mask for projecting an image of an integrated circuit design in lithographic processing, wherein the integrated circuit layout has a plurality of segments of critical width. The method comprises creating a first mask design by aligning mask features used to assist in projecting critical width segments with the critical width segments of the integrated circuit design, such that the first mask design meets predetermined manufacturability design rules, and creating a second mask design by aligning mask features with the critical width segments of the integrated circuit design, such that the second mask design meets predetermined lithographic design rules in regions local to the critical width segments. The method then includes identifying design features of the second mask design that violate the predetermined manufacturability design rules, and then creating a third mask design derived from the second mask design wherein the mask features of the second mask design that violate the predetermined manufacturability rules are selectively replaced by mask features from the first mask design so that the third mask design meets the predetermined manufacturability design rules. By way of example, the mask features used to assist in projecting critical width segments may comprise alternating phase shifting regions or sub-resolution assist features.
摘要:
A method of designing a layout of an alternating phase shifting mask for projecting an image of an integrated circuit design having a plurality of features to be projected using alternating phase shifting segments, including a gate-shrink region of a transistor having a critical width along a length thereof that extends beyond a diffusion region. The method also provides alternating phase shift design rules based on alternating phase shift design parameters comprising minimum phase width, minimum phase-to-phase spacing, and minimum extension of critical width beyond another feature. The method then includes identifying portions of the integrated circuit layout having a critical width feature that violate the alternating phase shift design rules, and reducing the length that the critical width gate-shrink region feature extends beyond the other diffusion region feature to the minimum extension. An alternating phase shifting mask layout is then generated in conformance with the alternating phase shift design rules.
摘要:
A method is provided for designing a mask layout for an integrated circuit that ensures proper functional interaction among circuit features by including functional inter-layer and intra-layer constraints on the wafer. The functional constraints used according to the present invention are applied among the simulated wafer images to ensure proper functional interaction, while relaxing or eliminating the EPE constraints on the location of the wafer images.
摘要:
A method of forming a planar CMOS transistor divides the step of forming the gate layer into a first step of patterning a resist layer with a first portion of the gate layer pattern and then etching the polysilicon with the pattern of the gates. A second step patterns a second resist layer with the image of the gate pads and local interconnect and then etching the polysilicon with the pattern of the gate pads and local interconnect, thereby reducing the number of diffraction and other cross-talk from different exposed areas.
摘要:
An iterative timing analysis is analytically performed before a chip is fabricated, based on a methodology using optical proximity correction techniques for shortening the gate lengths and adjusting metal line widths and proximity distances of critical time sensitive devices. The additional mask is used as a selective trim to form shortened gate lengths or wider metal lines for the selected, predetermined transistors, affecting the threshold voltages and the RC time constants of the selected devices. Marker shapes identify a predetermined subgroup of circuitry that constitutes the devices in the critical timing path. The analysis methodology is repeated as often as needed to improve the timing of the circuit with shortened designed gate lengths and modified RC timing constants until manufacturing limits are reached. A mask is made for the selected critical devices using OPC techniques.
摘要:
A system, method and recording medium are provided for generating patterns of a paired set of a block mask and a phase shift mask from a data set defining a circuit layout to be provided on a substrate. A circuit layout is inputted and critical segments of the circuit layout are identified. Then, based on the identified critical segments, block mask patterns are generated and legalized for inclusion in a block mask. Thereafter, based on the identified critical segments and the block mask patterns, phase mask patterns are generated, legalized and colored to define a phase shift mask for use in a dual exposure method with the block mask for patterning the identified critical segments of the circuit layout.
摘要:
The present invention is directed to a method for conversion of an integrated circuit design into a set of masks for fabrication of an integrated circuit that optimizes use of an edge based image transfer mask process.
摘要:
A method of designing an alternating phase shifting mask for projecting an image of an integrated circuit design having a plurality of spaced segments of critical dimension. The method initially identifies a phase universe boundary, such that the phase universe comprises a contiguous region of the integrated circuit layout wherein critical dimension segments within the phase universe are beyond a maximum phase interaction distance from any critical dimension segments outside the phase universe in accordance with predetermined design rules. The method then divides the phase universe into phase regions separated by the integrated circuit layout and any extensions of the critical dimension segments so that the phase regions are binary colorable within the phase universe.