摘要:
The present invention provides a method for manufacturing a transistor device, a method for manufacturing an integrated circuit, and a transistor device. The method for manufacturing the transistor device, among other steps, includes forming a gate structure over a substrate and forming source/drain regions in the substrate proximate the gate structure, the source/drain regions having a boundary that forms an electrical junction with the substrate. The method further includes forming dislocation loops in the substrate, the dislocation loops not extending outside the boundary of the source/drain regions.
摘要:
In one embodiment, a method for extracting C-V characteristics of ultra-thin oxides includes coupling a device under test to a testing structure, in which the device under test includes a plurality of transistors. Alternatively, the device under test includes a plurality of varactors. The method further includes inputting a radio frequency signal of at least one GHz into the testing structure, de-embedding the parasitics of the testing structure, inputting a bias into the device under test, determining the capacitance density per gate width of the device under test, plotting capacitance density per gate width versus gate length to obtain a first curve, and determining a slope of the first curve. These steps are repeated for one or more additional biasing conditions, and the determined slopes are plotted on a capacitance density per voltage graph to obtain a C-V curve for the device under test.
摘要:
The present invention provides a method for manufacturing a transistor device, a method for manufacturing an integrated circuit, and a transistor device. The method for manufacturing the transistor device, among other steps, includes forming a gate structure over a substrate and forming source/drain regions in the substrate proximate the gate structure, the source/drain regions having a boundary that forms an electrical junction with the substrate. The method further includes forming dislocation loops in the substrate, the dislocation loops not extending outside the boundary of the source/drain regions.
摘要:
The present invention provides a method for forming a transistor junction in a semiconductor wafer by implanting a dopant material (116) into the semiconductor wafer, implanting a halo material (110) into the semiconductor wafer (102), selecting a fluorine dose and energy to tailor one or more characteristics of the transistor, implanting fluorine into the semiconductor wafer at the selected dose and energy, activating the dopant material using a thermal process and annealing the semiconductor wafer to remove residual fluorine. The one or more characteristics of the transistor may include halo segregation, halo diffusion, the sharpness of the halo profile, dopant activation, dopant profile sharpness, drive current, bottom wall capacitance or near edge capacitance.
摘要:
A method of forming a semiconductor device includes implanting a precipitate into a gate conductor of an at least partially formed semiconductor device. The gate conductor including a plurality of semiconductor grains. The boundaries of adjacent grains forming a dopant migration path. A plurality of precipitate regions are formed within the gate conductor. At least some of the precipitate regions located at a junction of at least two grains. The gate conductor of the at least partially formed semiconductor device is doped with a dopant. The dopant diffuses inwardly along the dopant migration path.
摘要:
A method of forming a semiconductor device includes implanting a precipitate into a gate conductor of an at least partially formed semiconductor device. The gate conductor including a plurality of semiconductor grains. The boundaries of adjacent grains forming a dopant migration path. A plurality of precipitate regions are formed within the gate conductor. At least some of the precipitate regions located at a junction of at least two grains. The gate conductor of the at least partially formed semiconductor device is doped with a dopant. The dopant diffuses inwardly along the dopant migration path.
摘要:
A method of forming an associated transistor is presented whereby short channel effects and junction capacitances are mitigated and enhanced switching speeds are thereby facilitated. Compensation regions are formed within a substrate by implanting dopants relatively deeply over source and drain regions formed within the substrate. The compensation regions are spaced apart slightly less than are the source and drain regions. This spacing affects potential contours and reduces junction capacitances within the transistor. The different distances between the source and drain regions and the compensation regions are achieved by forming and selectively adjusting sidewall spacers adjacent to a gate structure of the transistor. These spacers serve as guides for the dopants implanted into the substrate to form the source and drain regions and the compensation regions.
摘要:
A method of forming a semiconductor device includes implanting a precipitate into a gate conductor of an at least partially formed semiconductor device. The gate conductor including a plurality of semiconductor grains. The boundaries of adjacent grains forming a dopant migration path. A plurality of precipitate regions are formed within the gate conductor. At least some of the precipitate regions located at a junction of at least two grains. The gate conductor of the at least partially formed semiconductor device is doped with a dopant. The dopant diffuses inwardly along the dopant migration path.
摘要:
The present invention provides a semiconductor device 200 having an angled compensation implant, a method of manufacture therefore and a method of manufacturing an integrated circuit including the angled compensation implant. In one embodiment, the method of manufacturing the semiconductor device 200 includes creating a halo implant 240 in a substrate 210, introducing a compensation implant 260 in the substrate 210 at an angle abnormal to the substrate 210 and forming a source/drain region 250 above the compensation implant 260, the angle reducing a capacitance associated with the halo implant 240 or the source/drain region 250. The method further includes placing a gate structure 230 over the substrate 210.
摘要:
The present invention provides a semiconductor device 200 having an angled compensation implant, a method of manufacture therefore and a method of manufacturing an integrated circuit including the angled compensation implant. In one embodiment, the method of manufacturing the semiconductor device 200 includes creating a halo implant 240 in a substrate 210, introducing a compensation implant 260 in the substrate 210 at an angle abnormal to the substrate 210 and forming a source/drain region 250 above the compensation implant 260, the angle reducing a capacitance associated with the halo implant 240 or the source/drain region 250. The method further includes placing a gate structure 230 over the substrate 210.