Abstract:
Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique. The electrochemical mechanical polishing technique may include a polishing composition comprising an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, and a solvent.
Abstract:
Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer. The ECMP polishing compositions and methods described herein improve the effective removal rate of materials from the substrate surface, such as copper, with a reduction in planarization type defects and yielding a desirable surface finish.
Abstract:
Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
Abstract:
An apparatus and method for planarizing a surface of a substrate using a chamber separated into two parts by a membrane, and two separate electrolytes is provided. The embodiments of the present invention generally provide an electrochemical mechanical polishing system that reduces the number of defects found on the substrate surface after polishing. An exemplary electrochemical apparatus includes a physical barrier that prevents any trapped gas or gas generated during processing from residing in areas that can cause defects on the substrate. The process can be aided by the addition of various chemical components to the electrolyte that tend to reduce the gas generation at the cathode surface during the ECMP anodic dissolution process.
Abstract:
Methods, articles of manufacture, and apparatus are provided for depositing a layer, planarizing a layer, or combinations thereof, a material layer on a substrate. In one embodiment, an article of manufacture is provided for polishing a substrate, comprising a polishing article having a polishing surface, a plurality of passages formed through the polishing article for flow of material therethrough, and a plurality of grooves disposed in the polishing surface. The article of manufacture may be used in a processing system. The article of manufacture may be used in a method for processing a substrate, comprising positioning the substrate in an electrolyte solution containing a polishing article, optionally depositing a material on the substrate by an electrochemical deposition method, and polishing the substrate with the polishing article.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a pad assembly having a conductive pad, a backing and a conductive layer adapted to be biased by a power source. In another embodiment, an apparatus for polishing a substrate includes a pad assembly disposed in a basin. The basin has two electrodes coupled to opposite poles of a power source. Each electrode extends partially through a respective aperture formed in the pad assembly. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
Abstract:
Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 3 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electrochemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
Abstract:
Method and apparatus for depositing layers by atomic layer deposition. A virtual shower curtain is established between the substrate support and chamber to minimize the volume in which the reactants are distributed. A showerhead may be used to allow closer placement of the substrate thereto, further reducing the reaction volume. Zero dead space volume valves with close placement to the chamber lid and fast cycle times also improve the cycle times of the process.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.