Abstract:
Provided herein is a system architecture of semiconductor manufacturing equipment, wherein degas chamber(s) are integrated to the conventional pass-through chamber location. Also provided herein is a system/method for depositing Cu barrier and seed layers on a semiconductor wafer. This system comprises a front opening unified pod(s), a single wafer loadlock chamber(s), a degas chamber(s), a preclean chamber(s), a Ta or TaN process chamber(s), and a Cu process chamber(s). The degas chamber is integrated to a pass-through chamber. Such system may achieve system throughput higher than 100 wafers per hour.
Abstract:
The present invention provides an electrochemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electrochemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electrochemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electrochemical deposition process and the components of the electrochemical deposition system.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electrochemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
Abstract:
A method and apparatus is provided for depositing and planarizing a material layer on a substrate. In one embodiment, an apparatus is provided which includes a partial enclosure, a permeable disc, a diffuser plate and optionally an anode. A substrate carrier is positionable above the partial enclosure and is adapted to move a substrate into and out of contact or close proximity with the permeable disc. The partial enclosure and the substrate carrier are rotatable to provide relative motion between a substrate and the permeable disc. In another aspect, a method is provided in which a substrate is positioned in a partial enclosure having an electrolyte therein at a first distance from a permeable disc. A current is optionally applied to the surface of the substrate and a first thickness is deposited on the substrate. Next, the substrate is positioned closer to the permeable disc and a second thickness is deposited on the substrate. During the deposition, the partial enclosure and the substrate are rotated relative one another.
Abstract:
A method and apparatus for annealing copper. The method comprises forming a copper layer by electroplating on a substrate in an integrated processing system and annealing the copper layer in a chamber inside the integrated processing system.
Abstract:
Methods and apparatus for planarizing a substrate surface are provided. In one aspect, a method is provided for planarizing a substrate surface including polishing a first conductive material to a barrier layer material, depositing a second conductive material on the first conductive material by an electrochemical deposition technique, and polishing the second conductive material and the barrier layer material to a dielectric layer. In another aspect, a processing system is provided for forming a planarized layer on a substrate, the processing system including a computer based controller configured to cause the system to polish a first conductive material to a barrier layer material, deposit a second conductive material on the first conductive material by an electrochemical deposition technique, and polish the second conductive material and the barrier layer material to a dielectric layer.
Abstract:
A method and apparatus is provided for depositing and planarizing a material layer on a substrate. In one embodiment, an apparatus is provided which includes a partial enclosure, a permeable disc, a diffuser plate and optionally an anode. A substrate carrier is positionable above the partial enclosure and is adapted to move a substrate into and out of contact or close proximity with the permeable disc. The partial enclosure and the substrate carrier are rotatable to provide relative motion between a substrate and the permeable disc. In another aspect, a method is provided in which a substrate is positioned in a partial enclosure having an electrolyte therein at a first distance from a permeable disc. A current is optionally applied to the surface of the substrate and a first thickness is deposited on the substrate. Next, the substrate is positioned closer to the permeable disc. During the deposition, the partial enclosure and the substrate are rotated relative one another.
Abstract:
A method and apparatus for heating and cooling a substrate are provided. A chamber is provided that comprises a heating mechanism adapted to heat a substrate positioned proximate the heating mechanism, a cooling mechanism spaced from the heating mechanism and adapted to cool a substrate positioned proximate the cooling mechanism, and a transfer mechanism adapted to transfer a substrate between the position proximate the heating mechanism and the position proximate the cooling mechanism.
Abstract:
The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
Abstract:
The invention generally provides methods and compositions for planarizing a substrate surface having underlying dielectric materials. Aspects of the invention provide compositions and methods using a combination of low polishing pressures, polishing compositions, various polishing speeds, selective polishing pads, and selective polishing temperatures, for removing barrier materials by a chemical mechanical polishing technique with minimal residues and minimal seam damage. Aspects of the invention are achieved by employing a strategic multi-step process including sequential CMP at low polishing pressure to remove the deposited barrier materials.