Abstract:
Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a laser energy absorbing, non-photodefinable topcoat disposed over a water-soluble base layer disposed over the semiconductor substrate. Because the laser light absorbing material layer is non-photodefinable, material costs associated with conventional photo resist formulations may be avoided. The mask is direct-write patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. Absorption of the mask layer within the laser emission band (e.g., UV band and/or green band) promotes good scribe line quality. The substrate may then be plasma etched through the gaps in the patterned mask to singulate the IC with the mask protecting the ICs during the plasma etch. The soluble base layer of the mask may then be dissolved subsequent to singulation, facilitating removal of the layer.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
Abstract:
In embodiments, a hybrid wafer or substrate dicing process involving an initial laser scribe and subsequent plasma etch is implemented for die singulation while also removing an oxidation layer from metal bumps on the wafer. In one embodiment, a method includes forming a mask over the semiconductor wafer covering the plurality of ICs, the plurality of ICs including metal bumps or pads with an oxidation layer. The method includes patterning the mask with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the ICs. The method includes plasma etching the semiconductor wafer through the gaps in the patterned mask to singulate the plurality of ICs and remove the oxidation layer from the metal bumps or pads.