Abstract:
Disclosed are methods of plasma etching through a substrate while preventing rapid leakage of heat transfer fluid during the etch process, protecting process chamber hardware underlying said substrate, and separating components within said substrate while maintaining said components in a position relative to other components within said substrate. The method involves application of a disposable protective barrier layer to the backside of the substrate prior to etching and then removing the barrier layer subsequent to etching.
Abstract:
Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises treating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures which may be adjusted to be carried out in a either a single chamber processing system or a multi-chamber processing system.
Abstract:
Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.
Abstract:
The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.
Abstract:
A two-step method of releasing microelectromechanical devices from a substrate is disclosed. The first step comprises isotropically etching a silicon oxide layer sandwiched between two silicon-containing layers with a gaseous hydrogen fluoride-water mixture, the overlying silicon layer to be separated from the underlying silicon layer or substrate for a time sufficient to form an opening but not to release the overlying layer, and the second step comprises adding a drying agent to substitute for moisture remaining in the opening and to dissolve away any residues in the opening that can cause stiction.
Abstract:
This invention is directed to a method for etching films on semiconductor substrates and cleaning etch chambers. The method includes an improved processing sequence and cleaning method where residue formed from processing a previous substrate are cleaned by the etching process used to remove an exposed layer of material from the present substrate. The process provides improved substrate throughput by combining the step to clean residue from a previous substrate with an etch step conducted on the present substrate. Applicants have found the method particularly useful in processing structures such as DRAM stacks, especially where the residue is formed by a trench etched in the previous silicon substrate and the exposed layer etched from the present substrate is silicon nitride.
Abstract:
This invention is directed to a method for plasma etching difficult to etch materials at a high etch rate. The method is particularly useful in plasma etching silicon nitride layers more than five microns thick. The method includes a plasma formed by energy provided from two separate power sources and a gaseous mixture that includes only an etchant gas and a sputtering gas. The power levels from the separate power sources and the ratio between the flow rates of the etchant gas and a sputtering gas can be advantageously adjusted to obtain etch rates of silicon nitride greater than two microns per minute. Additionally, an embodiment of the method of the invention provides a two etch step process which combines a high etch rate process with a low etch rate process to achieve high throughput while minimizing the likelihood of damage to underlying layers. The first etch step of the two-step method provides a high etch rate of about two microns per minute to remove substantially all of a layer to be etched the. In the second step, a low etch rate process having an etch rate below about two microns per minute is used remove any residual material not removed by the first etch step.
Abstract:
A method of determining the time to release of a movable feature in a multilayer substrate of silicon-containing materials including alternate layers of polysilicon and silicon oxide wherein a mass monitoring device determines the mass of a released feature, and the substrate is etched with anhydrous hydrogen fluoride until the substrate mass is equivalent to that of the released movable feature when the etch time is noted. A suitable mass monitoring device is a quartz crystal microbalance.
Abstract:
We have developed an uncomplicated method of plasma etching deeply recessed features such as deep trenches, of at least 5 nullm in depth, in a silicon-containing substrate, in a manner which generates smooth sidewalls, having a roughness of less than about 1 nullm, typically less than about 500 nm, and even more typically between about 100 nm and 20 nm. Features having a sidewall taper angle, relative to an underlying substrate, typically ranges from about 85null to about 92null and exhibiting the smooth sidewalls are produced by the method. In one embodiment, a stabilizing etchant species is used constantly during the plasma etch process, while at least one other etchant species and at least one polymer depositing species are applied intermittently, typically periodically, relative to each other. In another embodiment, the stabilizing etchant species is used constantly and a mixture of the other etchant species and polymer depositing species is used intermittently.
Abstract:
A substrate carrier for carrying one or more substrates comprises a bottom surface, a top surface opposed to the bottom surface, one or more recesses formed into the top surface, each of the one or more recesses having a support surface that defines a support region for a substrate. The support region is adapted to contact a bottom of the substrate. The support region may have a thickness less than a depth of the one or more recesses. The support region may comprise a porous material to permit thermal fluid to percolate through the support region.