Abstract:
Methods and apparatus for processing a substrate using improved shield configurations are provided herein. For example, a process kit for use in a physical vapor deposition chamber comprises a shield comprising an inner wall comprising an upper portion having a first wavy fin configuration and a bottom portion having a second wavy fin configuration different from the first wavy fin configuration such that a surface area of the shield is about 1400 in2 to about 1410 in2.
Abstract:
Embodiments of the disclosure include an electrostatic chuck assembly, a processing chamber and a method of maintaining a temperature of a substrate is provided. In one embodiment, an electrostatic chuck assembly is provided that includes an electrostatic chuck, a cooling plate and a gas box. The cooling plate includes a gas channel formed therein. The gas box is operable to control a flow of cooling gas through the gas channel.
Abstract:
Embodiments described herein relate to a substrate support and techniques for controlling a temperature of the same. The substrate support includes a heating element and an over temperature switch disposed therein. The heating element heats the substrate support and a substrate disposed thereon. The over temperature switch controls a temperature of the heating element and the substrate support. The over temperature switch is operable to switch states in response to a temperature of the substrate support exceeding a predefined temperature.
Abstract:
Methods and apparatus for processing a substrate using improved shield configurations are provided herein. For example, a process kit for use in a physical vapor deposition chamber comprises a shield comprising an inner wall comprising an upper portion having a first wavy fin configuration and a bottom portion having a second wavy fin configuration different from the first wavy fin configuration such that a surface area of the shield is about 1400 in2 to about 1410 in2.
Abstract:
Methods and apparatus for processing a substrate using improved shield configurations are provided herein. For example, a process kit for use in a physical vapor deposition chamber includes a shield comprising an inner wall with an innermost diameter configured to surround a target when disposed in the physical vapor deposition chamber, wherein a ratio of a surface area of the shield to a planar area of the inner diameter is about 3 to about 10.
Abstract:
Implementations described herein provide a pedestal lift assembly for a plasma processing chamber and a method for using the same. The pedestal lift assembly has a platen configured to couple a shaft of a pedestal disposed in the plasma processing chamber. An absolute linear encoder is coupled to a fixed frame wherein the absolute linear encoder is configured to detect incremental movement of the platen. A lift rod is attached to the platen. A motor rotor encoder brake module (MRBEM) is coupled to the fixed frame and moveably coupled to the lift rod, the motor encoder brake module configured to move the lift rod in a first direction and a second direction, wherein the movement of the lift rod results in the platen traveling vertically relative to the fixed frame.