摘要:
A sensor includes a movably supported movable element and an opposing member, and sensor detects a relative positional relationship between the movable element and the opposing member which are provided with a spacing therebetween. The opposing member has an impurity-doped portion which is provided at either an opposing portion, which is opposed to the movable element, or an adjoining portion, which adjoins the opposing portion. At least a part of the impurity-doped portion is formed on an opposite surface (that is, opposite to a surface that faces the movable element), from which opposite surface an electrical wiring is led out.
摘要:
Provided is a sensor including a movably supported movable element and an opposing member. The sensor detects a relative positional relationship between the movable element and the opposing member which are provided with a spacing therebetween The opposing member has an impurity-doped portion which is provided to one of an opposing portion which is opposed to the movable element and an adjoining portion which adjoins the opposing portion. At least a part of the impurity-doped portion is formed on an opposite surface opposite to a surface which is opposed to the movable element, from which opposite surface an electrical wiring is led out.
摘要:
An ultrasound image forming method comprises a first step of receiving a first signal reflected from the object, a second step of obtaining an aberration correction value based on the first signal thus received, a third step of receiving a second signal reflected from the object when a second ultrasound corrected based on the aberration correction value is transmitted to the object, and a fourth step of forming an image from the aberration correction value and the second signal. The center frequency of the second ultrasound is between 0.5 MHz and 20 MHz, the center frequency of the first ultrasound is between 3/16 and 9/20 of the center frequency of the second ultrasound. By this method, an accurate aberration correction value can be obtained and an ultrasound imaging with high resolution can be achieved even if aberrations are large and difficult to correct.
摘要:
An ultrasound image forming method comprises a first step of receiving a first signal reflected from the object, a second step of obtaining an aberration correction value based on the first signal thus received, a third step of receiving a second signal reflected from the object when a second ultrasound corrected based on the aberration correction value is transmitted to the object, and a fourth step of forming an image from the aberration correction value and the second signal. The center frequency of the second ultrasound is between 0.5 MHz and 20 MHz, the center frequency of the first ultrasound is between 3/16 and 9/20 of the center frequency of the second ultrasound. By this method, an accurate aberration correction value can be obtained and an ultrasound imaging with high resolution can be achieved even if aberrations are large and difficult to correct.
摘要:
The present invention provides a technology for decreasing a dispersion of the performance among electromechanical transducers each having through wiring. A method for manufacturing an electromechanical transducer includes: obtaining a structure in which an insulative portion having a through hole therein is bonded onto an electroconductive substrate; filling the through hole with an electroconductive material to form a through wiring which is electrically connected with the electroconductive substrate; and using the electroconductive substrate as a first electrode, forming a plurality of vibrating membrane portions including a second electrode, which opposes to the first electrode through a plurality of gaps, on an opposite side of the first electrode to the side having the insulative portion, to thereby forming a plurality of cells.
摘要:
In a method of treating a semiconductor element which at least includes a semiconductor, a threshold voltage of the semiconductor element is changed by irradiating the semiconductor with light with a wavelength longer than an absorption edge wavelength of the semiconductor. The areal density of in-gap states in the semiconductor is 1013 cm−2eV−1 or less. The band gap may be 2 eV or greater. The semiconductor may include at least one selected from the group consisting of In, Ga, Zn and Sn. The semiconductor may be one selected from the group consisting of amorphous In—Ga—Zn—O (IGZO), amorphous In—Zn—O (IZO) and amorphous Zn—Sn—O (ZTO). The light irradiation may induce the threshold voltage shift in the semiconductor element, the shift being of the opposite sign to the threshold voltage shift caused by manufacturing process history, time-dependent change, electrical stress or thermal stress.
摘要:
A method for forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD includes forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD under conditions such that when a deposited film having a thickness of 300 nm or more is formed on a substrate while the substrate is in a stationary state, an area of the microcrystalline silicon region in which an intensity of Raman scattering attributed to a crystalline substance in the deposited film is equal to or higher than three times an intensity of Raman scattering attributed to an amorphous is 50% or more of the total area based on the area of the microcrystalline silicon region and the area of a region composed of the amorphous.
摘要:
A chemical-reaction inducing means is provided in an exhaust line connecting a processing space for subjecting a substrate or a film to plasma processing to an exhaust means, and at least either an unreacted gas or byproduct exhausted from the processing space are caused to chemically react without allowing plasma in the processing space to reach the chemical-reaction inducing means, thereby improving the processing ability of the chemical-reaction inducing means to process the unreacted gas or byproduct.
摘要:
In a process for forming on a substrate a transparent conductive film having crystallizability, the process comprises a first step of forming a film at a first film formation rate and a second step of forming a film at a second film formation rate, and the relationship between film formation rates in the respective steps satisfies: 2≦(second film formation rate)/(first film formation rate)≦100; which provides a process for producing a transparent conductive film by a deposition process advantageous for cost reduction, which can form in a short time a transparent conductive film having an uneven surface profile with a high light-confining effect, and can bring about an improvement in photovoltaic performance and enjoy a high mass productivity when applied to the formation of multi-layer structure of photovoltaic devices.
摘要:
There are provided techniques of forming a back reflecting layer with constant characteristics throughout long-term film formation and forming a metal oxide film so as to be able to maintain a current of a bottom cell and thereby keep a short-circuit current Jsc of a solar cell constant over a long period of time. A sputtering method is a method of forming a stack of a metal film and a metal oxide film, comprising the step 1 of forming a metal layer on a substrate, the step 2 of bringing a surface of the metal layer into contact with active oxygen, and the step 3 of forming a metal oxide film thereon after the step 2, wherein in the step 2 an amount of active oxygen at a first substrate position is different from that at a second substrate position.