摘要:
The present invention generally provides a method for improving fill and electrical performance of metals deposited on patterned dielectric layers. Apertures such as vias and trenches in the patterned dielectric layer are etched to enhance filling and then cleaned in the same chamber to reduce metal oxides within the aperture. The invention also provides cleaning the patterned dielectric layer in a processing chamber with a first plasma consisting essentially of argon, wherein the first plasma is generated by supplying power to a coil surrounding the processing chamber and supplying bias to a substrate support member supporting the substrate, cleaning the patterned dielectric layer in the processing chamber with a second plasma consisting essentially of hydrogen and helium, wherein the second plasma is generated by increasing the supply of power to the coil surrounding the processing chamber and reducing the supply of bias to the substrate support member supporting the substrate, depositing a barrier layer on the patterned dielectric layer after exposing the dielectric layer to the first plasma and the second plasma, and depositing a metal on the barrier layer. Furthermore, the sequential plasma treatments can be practiced in a variety of plasma processing chambers of an integrated process sequence, including pre-clean chambers, physical vapor deposition chambers, etch chambers, and other plasma processing chambers.
摘要:
The invention is a precleaning process suitable for fabricating metal plugs in a low-&kgr;, carbon-containing dielectric. More specifically, the invention is a process for cleaning a contact area of a metal conductor on a semiconductor workpiece so as to minimize damage to a low-&kgr;, carbon-containing dielectric overlying the metal. After forming contact openings in the low-&kgr; dielectric so as to expose contact areas on the underlying metal conductor, the contact areas are cleaned by exposing the workpiece to an atmosphere formed by plasma decomposition of a mixture of hydrogen-containing and helium gases. Surprisingly, our preclean process can repair damage to the dielectric caused by preceding process steps, such as oxygen plasma ashing processes for removing photoresist.
摘要:
The invention is a precleaning process suitable for fabricating metal plugs in a low-&kgr;, carbon-containing dielectric. More specifically, the invention is a process for cleaning a contact area of a metal conductor on a semiconductor workpiece so as to minimize damage to a low-&kgr;, carbon-containing dielectric overlying the metal. After forming contact openings in the low-&kgr; dielectric so as to expose contact areas on the underlying metal conductor, the contact areas are cleaned by exposing the workpiece to an atmosphere formed by plasma decomposition of a mixture of hydrogen-containing and helium gases. Surprisingly, our preclean process can repair damage to the dielectric caused by preceding process steps, such as oxygen plasma ashing processes for removing photoresist.
摘要:
The present invention provides a method and apparatus for precleaning a patterned substrate with a plasma comprising a mixture of argon, helium, and hydrogen. Addition of helium to the gas mixture of argon and hydrogen surprisingly increases the etch rate in comparison to argon/hydrogen mixtures. Etch rates are improved for argon concentrations below about 75% by volume. RF power is capacitively and inductively coupled to the plasma to enhance control of the etch properties. Argon, helium, and hydrogen can be provided as separate gases or as mixtures.
摘要:
A method of cleaning a contact area of a semiconductor or metal region on a substrate of an electronic device. First, the contact area is cleaned by exposing the substrate to a plasma that includes fluorine-containing species. Second, the substrate is exposed to a second atmosphere that scavenges fluorine, preferably formed by plasma decomposition of a hydrogen-containing gas. The second atmosphere removes any fluorine residue remaining on the contact area and overcomes any need to include argon sputtering in the cleaning process. Another aspect of the invention is a method of depositing a refractory metal over a contact area of a semiconductor region on a substrate. The contact area is cleaned according to the two-step process of the preceding paragraph. Then a refractory metal is deposited over the contact area. The two-step cleaning process can reduce the electrical resistance between the refractory metal and the semiconductor region. Furthermore, if the substrate is annealed to interdiffuse atoms of the semiconductor material and the refractory metal, the two-step cleaning process can reduce the anneal temperature required to achieve a desired low electrical resistance.
摘要:
Native oxides can be removed from a substrate having high aspect ratio openings therein by using a plasma gas precursor mixture of a reactive halogen-containing gas and a carrier gas such as helium. The lightweight ions generated in the plasma react with oxygen to produce very volatile oxygen-containing species that can be readily removed through the exhaust system of the plasma chamber, preventing re-deposition of oxides on the surface of the substrate or on the sidewalls or bottom of the openings. When the substrate is mounted in a plasma chamber having dual power sources that can form a plasma above the substrate and can apply bias to the substrate, tapered openings are formed rapidly that can be readily filled without forming voids.
摘要:
The invention generally provides an apparatus that reduces backside sputtering of the substrate in a pre-clean chamber and other etch chambers. The invention also provides an apparatus that reduces flaking of material from the film formed on the surfaces of the process kit and extends the specified lifetime of a process kit. One aspect of the invention provides an apparatus for supporting a substrate, comprising a support pedestal contacting a central portion of the substrate and an insulator surrounding the support pedestal, the insulator having a beveled portion extending from a circumferential edge of the substrate.
摘要:
The present invention generally provides a method for stabilizing a halogen-doped silicon oxide film, particularly a fluorinated silicon oxide film. The invention also provides a method for preventing loosely bonded halogen atoms from reacting with components of the barrier layer during subsequent processing of the substrate. The invention provides a hydrogen plasma treatment of the halogen-doped silicon oxide film without subjecting the substrate to a heated environment that may damage the substrate and the structures formed on the substrate. The invention also improves the adhesion strength between the halogen-doped silicon oxide film and the barrier layer. Furthermore, the hydrogen plasma treatment can be practiced in a variety of plasma processing chambers of an integrated process sequence, including pre-clean chambers, physical vapor deposition chambers, chemical vapor deposition chambers, etch chambers and other plasma processing chambers.
摘要:
A coated aluminum component for a substrate processing chamber comprises an aluminum component having a surface; a first aluminum oxide layer formed on the surface of the aluminum component, the aluminum oxide layer having a surface comprising penetrating surface features; and a second aluminum oxide layer on the first aluminum oxide layer, the second aluminum oxide layer substantially completely filling the penetrating surface features of the first aluminum oxide layer. A method of forming the coated aluminum component is also described.
摘要:
Embodiments of the present invention provide a method, article of manufacture, and apparatus for processing semiconductor wafers. The method includes preheating a semiconductor wafer in two types of chambers. In one embodiment, a first preheating chamber is a load lock and a second preheating chamber is a transition chamber. Semiconductor wafer processing systems which can perform embodiments of the method are presented.