摘要:
A semiconductor structure includes a substrate having a memory region and a logic region. A first p-type device is formed in the memory region and a second p-type device is formed in the logic region. At least a portion of a semiconductor gate of the first p-type device has a lower p-type dopant concentration than at least a portion of a semiconductor gate of the second p-type device. The semiconductor gates of the first and second p-type devices each have a non-zero p-type dopant concentration.
摘要:
A one-transistor dynamic random access memory (DRAM) cell includes a transistor which has a first source/drain region, a second source/drain region, a body region between the first and second source/drain regions, and a gate over the body region. The first source/drain region includes a Schottky diode junction with the body region and the second source/drain region includes an n-p diode junction with the body region.
摘要:
A one-transistor dynamic random access memory (DRAM) cell includes a transistor which has a first source/drain region, a second source/drain region, a body region between the first and second source/drain regions, and a gate over the body region. The first source/drain region includes a Schottky diode junction with the body region and the second source/drain region includes an n-p diode junction with the body region.
摘要:
A one-transistor dynamic random access memory (DRAM) cell includes a transistor which has a first source/drain region, a second source/drain region, a body region between the first and second source/drain regions, and a gate over the body region. The first source/drain region includes a Schottky diode junction with the body region and the second source/drain region includes an n-p diode junction with the body region.
摘要:
An electronic device can include a static-random-access memory cell. The static-random-access memory cell can include a first transistor of a first type and a second transistor of a second type. The first transistor can have a first channel length extending along a first line, and the second transistor can have a second channel length extending along a second line. The first line and the second line can intersect at an angle having a value other than any integer multiple of 22.5°. In a particular embodiment, the first transistor can include a pull-up transistor, and the second transistor can include a pass gate or pull-down transistor. A process can be used to form semiconductor fins and conductive members, which include gate electrode portions, to achieve the electronic device including the first and second transistors.
摘要:
A transistor having a source with higher resistance than its drain is optimal as a pull-up device in a storage circuit. The transistor has a source region having a source implant having a source resistance. The source region is not salicided. A control electrode region is adjacent the source region for controlling electrical conduction of the transistor. A drain region is adjacent the control electrode region and opposite the source region. The drain region has a drain implant that is salicided and has a drain resistance. The source resistance is more than the drain resistance because the source region having a physical property that differs from the drain region.
摘要:
A transistor having a source with higher resistance than its drain is optimal as a pull-up device in a storage circuit. The transistor has a source region having a source implant having a source resistance. The source region is not salicided. A control electrode region is adjacent the source region for controlling electrical conduction of the transistor. A drain region is adjacent the control electrode region and opposite the source region. The drain region has a drain implant that is salicided and has a drain resistance. The source resistance is more than the drain resistance because the source region having a physical property that differs from the drain region.
摘要:
Semiconductor structures and methods for making semiconductor structures include a split gate non-volatile memory (NVM) cell in an NVM region. A charge storage layer, a first conductive layer, and a capping layer are formed over the substrate, which are patterned to form a control gate stack in the NVM region of the substrate. A high-k dielectric layer, a metal layer, and a second conductive layer are formed over the substrate. The second conductive layer and the metal layer are patterned to form remaining portions of the second conductive layer and the metal layer over and adjacent to a first side of the control gate stack. The remaining portion of the second conductive layer is removed to form a select gate stack, which includes the remaining portion of the metal layer. A stressor layer is formed over the substrate.
摘要:
A first transistor and a second transistor are formed with different threshold voltages. A first gate is formed over the first region of a substrate for a first transistor and a second gate over the second region for a second transistor. The first region is masked. A threshold voltage of the second transistor is adjusted by implanting through the second gate while masking the first region. Current electrode regions are formed on opposing sides of the first gate and current electrode regions on opposing sides of the second gate.
摘要:
A method for forming a semiconductor device includes forming a first plurality of nanocrystals over a surface of a substrate having a first region and a second region, wherein the first plurality of nanocrystals is formed in the first region and the second region and has a first density; and, after forming the first plurality of nanocrystals, forming a second plurality of nanocrystals over the surface of the substrate in the second region and not the first region, wherein the first plurality of nanocrystals together with the second plurality of nanocrystals in the second region result in a second density, wherein the second density is greater than the first density.