Abstract:
A communication system may include a number of communication channels operating in accordance with one or more communication standards. The channels may generate data clocks from one or more master clock signals. The phase of the data clocks may be aligned using phase detectors for determining respective phase relationships and using phase interpolators for adjusting respective clock phases. The communication system may include communication channels that operate at different data clock frequencies. These systems may divide their respective data clocks in order to achieve a common clock frequency for use in their phase alignment. The phase detectors and associated circuitry may be disabled to save power when not in use.
Abstract:
A communication system may include a number of communication channels operating in accordance with one or more communication standards. The channels may generate data clocks from one or more master clock signals. The phase of the data clocks may be aligned using phase detectors for determining respective phase relationships and using phase interpolators for adjusting respective clock phases. The communication system may include communication channels that operate at different data clock frequencies. These systems may divide their respective data clocks in order to achieve a common clock frequency for use in their phase alignment. The phase detectors and associated circuitry may be disabled to save power when not in use.
Abstract:
A communication system may include a number of communication channels operating in accordance with one or more communication standards. The channels may generate data clocks from one or more master clock signals. The phase of the data clocks may be aligned using phase detectors for determining respective phase relationships and using phase interpolators for adjusting respective clock phases. The communication system may include communication channels that operate at different data clock frequencies. These systems may divide their respective data clocks in order to achieve a common clock frequency for use in their phase alignment. The phase detectors and associated circuitry may be disabled to save power when not in use.
Abstract:
A clock driver includes a clock interconnect running to multiple lanes of an integrated circuit chip, the interconnect including a positive clock line and a negative clock line. A clock generator generates a clock signal and a source inductor, through which the clock generator draws DC power, helps drive the clock signal down the interconnect. The source inductor may be tunable. A distributed (or tunable) inductor is connected to and positioned along the positive and negative clock lines between the source inductor and an end of the interconnect. Multiple distributed inductors may be positioned and optionally tuned such as to create a resonant response in the clock signal with substantially similar quality and amplitude as delivered to the multiple lanes. Any of the distributed and source inductors may be switchable to change inductance of the distributed inductors and thus change the clock frequency in the lanes for different communication standards.
Abstract:
An apparatus for driving a load using a low supply voltage includes a voltage-mode driver and a current source arrangement. The voltage-mode driver provides a desired termination impedance and a first portion of a desired output current to the load. The current source arrangement provides a second portion of the desired output current. The desired output current generates a predetermined voltage swing across the load, while the voltage-mode driver and the current source arrangement are powered by the low supply voltage.
Abstract:
A low-power high-swing current-mode logic (CML) driver circuit includes a first differential-pair and a second differential-pair. The first differential-pair includes first transistors, and is coupled to a first voltage supply that supplies a first voltage. The second differential-pair includes second transistors, and a common node of the second differential-pair is coupled to a second voltage supply. The second voltage supply supplies a second voltage that is higher than the first voltage. Control terminals of the first transistors are coupled to control terminals of the second transistors to form input nodes of the driver circuit.
Abstract:
A clock driver includes a clock interconnect running to multiple lanes of an integrated circuit chip, the interconnect including a positive clock line and a negative clock line. A clock generator generates a clock signal and a source inductor, through which the clock generator draws DC power, helps drive the clock signal down the interconnect. The source inductor may be tunable. A distributed (or tunable) inductor is connected to and positioned along the positive and negative clock lines between the source inductor and an end of the interconnect. Multiple distributed inductors may be positioned and optionally tuned such as to create a resonant response in the clock signal with substantially similar quality and amplitude as delivered to the multiple lanes. Any of the distributed and source inductors may be switchable to change inductance of the distributed inductors and thus change the clock frequency in the lanes for different communication standards.