Abstract:
An integrated communications system. Comprising a substrate having a receiver disposed on the substrate for converting a received signal to an IF signal. Coupled to a VGA for low voltage applications and coupled to the receiver for processing the IF signal. The VGA includes a bank pair having a first bank of differential pairs of transistors and a second bank of differential pairs of transistors. The bank pair is cross-coupled in parallel, the IF signal is applied to the bank pair decoupled from a control signal used to control transconductance output gain of the bank pair over a range of input voltages. A digital IF demodulator is disposed on the substrate and coupled to the VGA for low voltage applications, for converting the IF signal to a demodulated baseband signal. And a transmitter is disposed on the substrate operating in cooperation with the receiver to establish a two way communications path.
Abstract:
A system and method for converting an analog input signal to a N-bit digital output signal. The invention comprises generating a plurality of reference voltage signals; pre-amplifying, separately, a difference between each of the plurality of reference voltage signals and an analog input signal using a plurality of cascaded, differential, switched-capacitor circuits to output a plurality of pre-amplified difference signals; and determining a zero-crossing result for each of the plurality of pre-amplified difference signals. Then one of a binary 1 and a binary 0 are assigned to each of the compared, pre-amplified signals. The binary 1's and 0's are encoded as an M-bit encoded signal, which is then decoded to output an N-bit digital output signal, wherein M is less that or equal to N.
Abstract:
Binary indications are converted to an analog representation with significant reduction in ringing at the transitions between successive binary indications and in the period during each binary indication. The binary indications are disposed in a row-and-column matrix to provide a thermometer code. Each stage of the converter includes a decoder and latch arranged so the decoder inputs settle before the latch is set by the clock pulses. The stages are implemented in complementary CMOS. Complementary transistors are biased so one transistor of the pair is driven to the rail while the other transistor of the pair floats. A dummy CMOS transistor is used to balance the number of transistors in the decoder paths.
Abstract:
A circuit is provided for reducing mismatches between the outputs of successive pairs of cells in an analog to digital converter A voltage input means is coupled to a first input terminal of each cell to introduce and an input voltage. A reference voltage means is coupled to a second input terminal of each cell to introduce progressive fractions of a reference voltage. A low impedance means is coupled between corresponding first output terminals and coupled between corresponding second output terminals in successive cells, to draw load-bearing currents to the successive cells, affecting the relative voltages and thereby reducing the effects of cell mismatches on these output terminals. Lastly, a high impedance means is coupled to the each of the first output terminals and to each of the second output terminals in successive cells.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An M-bit folding/interpolating analog-to-digital converter (ADC) circuit, comprising a reference voltage generator, a converter, an interpolator, an amplifying stage, a comparator, and an encoder. The converter has an amplifier that receives at least one of a plurality of first reference voltage signals and outputs a plurality of coarse bits. The converter also has N-number of folding blocks, which output a plurality of folded signals. Each folding block comprises a plurality of capacitors, a differential amplifier and a feedback element. The folded signals output by the converter are then interpolated, amplified, compared and output as a plurality of fine bits. The encoder receives the coarse and fine bits and outputs the digital signal.
Abstract:
In a latch circuit having a bistable pair of cross connected transistors of a first polarity and a third transistor of a second polarity, a current signal greater than a bias current is received at a latch circuit port, amplified with the third transistor, and applied to the latch circuit port. This decreases the time in which the latch circuit port receiving the current signal greater than the bias current reaches a steady state voltage.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
Binary indications are converted to an analog representation with significant reduction in ringing at the transitions between successive binary indications and in the period during each binary indication. The binary indications are disposed in a row-and-column matrix to provide a thermometer code. Each stage of the converter includes a decoder and latch arranged so the decoder inputs settle before the latch is set by the clock pulses. The stages are implemented in complementary CMOS. Complementary transistors are biased so one transistor of the pair is driven to the rail while the other transistor of the pair floats. A dummy CMOS transistor is used to balance the number of transistors in the decoder paths.