摘要:
An interface is formed by pressing a patterned first surface and a second surface together, with a particle-loaded interface material in between. The first surface is fabricated with a pattern of channels designed to redistribute the velocity gradients that occur in the interface material during interface formation in order to control the arrangement, orientation and concentration of particles at the end of the interface formation. The concept finds application in thermal interfaces and controlled placement of nano and micro particles and biological molecules.
摘要:
A stress release thermal interface is provided for preventing the building up of stress between chip and heat sink surfaces in a multi-chip module (MCM) while maintaining reliable thermal and mechanical contact. The interface achieves enhanced thermal conduction by using flexible, interlocking posts attached to the surfaces of the chip and the heat sink.
摘要:
A cooling device has a large number of closely spaced impinging jets, adjacent an impingement gap, with parallel return paths for supplying coolant flow for the impinging jets with the least possible pressure drop using an interdigitated, branched hierarchical manifold. Surface enhancement features spanning the impingement gap form U-shaped microchannels between single impinging jets and single outlets.
摘要:
A flexible, self-contained active multi-phase heat spreader apparatus for cooling electronic components, the heat spreader having fluid sealed between two plates and a pumping mechanism to actuate multi-phase flow of the fluid. Thermal energy from an electronic component in contact with the heat spreader is dissipated from a core region via the working fluid to the entire heat spreader, and then to a heat sink. Surface enhancement features located between the two plates aid transfer of thermal energy from a first metal plate into the fluid.
摘要:
A heat sink can include a folded fin with a base portion, an offset portion extending away from the base portion, the offset portion having a width, a narrowing tapering portion having a maximum width equal to the width of the offset portion, and an extension portion extending away from the narrowing tapering portion, the extension portion having a width smaller than the width of the offset portion.
摘要:
Interconnects for optoelectronic devices are described. An interconnect may include a stress relief feature. An interconnect may include an L-shaped feature.
摘要:
A solar module includes a solar cell, a heat spreader layer disposed above the solar cell, and a cell interconnect disposed above the solar cell. From a top-down perspective, the heat spreader layer at least partially surrounds an exposed portion of the cell interconnect.
摘要:
Integrated circuit-chip hot spot temperatures are reduced by providing localized regions of higher thermal conductivity in the conductive material interface at pre-designed locations by controlling how particles in the thermal paste stack- or pile-up during the pressing or squeezing of excess material from the interface. Nested channels are used to efficiently decrease the thermal resistance in the interface, by both allowing for the thermally conductive material with a higher particle volumetric fill to be used and by creating localized regions of densely packed particles between two surfaces.
摘要:
Interconnects for optoelectronic devices are described. For example, an interconnect for an optoelectronic device includes an interconnect body having an inner surface, an outer surface, a first end, and a second end. A plurality of bond pads is coupled to the inner surface of the interconnect body, between the first and second ends. A stress relief feature is disposed in the interconnect body. The stress relief feature includes a slot disposed entirely within the interconnect body without extending through to the inner surface, without extending through to the outer surface, without extending through to the first end, and without extending through to the second end of the interconnect body.
摘要:
Optoelectronic devices with heat spreader units are described. An optoelectronic device includes a back-contact optoelectronic cell including a plurality of back-contact metallization regions. One or more heat spreader units are disposed above the plurality of back-contact metallization regions. A heat sink is disposed above the one or more heat spreader units.