Abstract:
A dual light source enhanced integration system is provided. The system comprises: a first light source and a second light source with overlapping spectra; a light integrator configured to integrate light and having a first light entrance face and a second light entrance face; and, a beamsplitter system configured to about equally distribute light from each of the first light source and the second light source to each of the first light entrance face and the second light entrance face, such that the light from each of the first light source and the second light source is about equally combined at each of the first light entrance face and the second light entrance face.
Abstract:
A system for producing an output light beam of a given spectrum is provided. The system comprises: a light source; a separator configured to separate an input light beam, from the light source, into a retained light beam directed along a first path and an excess light beam directed along a second path, based on wavelength of the input light beam; an optical power shifter positioned to intercept the excess light beam, the optical power shifter configured to convert the excess light beam into a power-shifted light beam comprising at least some wavelengths and/or power red-shifted relative to the excess light beam; and a combiner positioned to intercept both the retained light beam and the power-shifted light beam, the combiner configured to combine the retained light beam and the power-shifted light beam onto a common path to produce the output light beam.
Abstract:
A wavelength conversion material array is provided, including a system comprising: a light source configured to emit excitation light at an excitation wavelength; a heatsink; a wavelength conversion material located on the heatsink, the wavelength conversion material comprising a relative wavelength conversion area of unity divided into an array of spots, a number of the spots in a range of 4 to 12, the wavelength conversion material configured to emit light at a wavelength greater than the excitation wavelength when irradiated by the excitation light; and, an array of lenslets configured to: receive the excitation light from the light source and irradiate each of the spots of the wavelength conversion material with the excitation light, the lenslets in a one-to-one relationship with the number of spots; and collect the light emitted by the wavelength conversion material.
Abstract:
According to the present specification there is provided a rotatable heat sink device which comprises a heat sink configured to enclose a cooling fluid, and the heat sink is rotatable about a rotational axis. The heat sink, in turn, comprises a first portion configured to receive thermal energy from a source external to the heat sink, and a second portion configured to dissipate at least a portion of the thermal energy to surroundings external to the device. The device further comprises an optical wavelength conversion material disposed on an outside surface of the first portion of the heat sink, and an agitator disposed inside the heat sink. The agitator is rotationally independent of the heat sink and is configured to promote circulation of the cooling fluid between the first portion and the second portion.
Abstract:
A light emitting wheel with eccentricity for dispelling a thermal boundary layer a light emitting material is provided, including a device comprising: a light emitting material; a cooling plate configured to cool the light emitting material, the cooling plate comprising a center-of-mass that is different from a center-of-rotation of the cooling plate; and, a hub located at the center-of-rotation of the cooling plate.
Abstract:
A device and kit for cooling a light emitting material are provided. The device comprises: a light emitting material; a cooling plate configured to cool the light emitting material; a window, the light emitting material sandwiched between the window and the cooling plate, the window configured to: transmit excitation light for exciting the light emitting material; transmit emitted light from the light emitting material; and, conduct heat away from the light emitting material to the cooling plate. The kit comprises the window and a holder there for.
Abstract:
There is provided an apparatus for wavelength conversion, comprising a wavelength converter, a first reflector, a second reflector, a third reflector, and a first lens. The first reflector has a curvature and is configured to reflect a plurality of input light beams onto the second reflector. The second reflector is configured to reflect the input light onto the third reflector. The first lens is disposed between the wavelength converter and the third reflector. The third reflector is configured to reflect the input light through the first lens and onto the wavelength converter, which is then excited to emit an emitted light. The first lens is configured to receive at least a portion of the emitted light, reduce its divergence, and at least partially transmit it to form an output light propagating towards the third reflector, which is configured to at least partially transmit the output light.
Abstract:
A system including rotationally static light emitting material with rotating optics is provided. The system comprises: a heatsink; at least one light emitting material on the heatsink, at least a portion of the light emitting material being circularly symmetrical around an axis, the heatsink and the light emitting material being rotationally fixed;optics configured to rotate relative to the at light emitting material around a rotational axis that is coaxial with the axis of the light emitting material, the optics configured to: receive excitation light along the rotational axis; convey the excitation light to one or more locations on the light emitting material as the optics are rotating; collect light emitted from the one or more locations on the light emitting material excited by the excitation light; and, convey the light collected from the at least one light emitting material to the rotational axis for emission there along.
Abstract:
A light emitting wheel with eccentricity for dispelling a thermal boundary layer a light emitting material is provided, including a device comprising: a light emitting material; a cooling plate configured to cool the light emitting material, the cooling plate comprising a center-of-mass that is different from a center-of-rotation of the cooling plate; and, a hub located at the center-of-rotation of the cooling plate.
Abstract:
A fixture for aligning tiled displays is provided. The fixture includes a frame. The fixture further includes a vision system supported by the frame, the vision system configured to image at predefined display corner positions defined by given display dimensions. The fixture further includes an attachment mechanism configured to attach the frame to an array of tiled displays each having the given display dimensions, such that the vision system images positions of the array corresponding to respective corners of a tiled display in the array, and adjacent display corner positions.