Abstract:
Coated glass articles for a glass-ceramic ceramming process including a parting agent coated on a surface of the glass article. The parting agent coating can comprise an aqueous dispersion comprising amorphous silicon dioxide agglomerate particles and a dispersant. The parting agent coating can be dried to forming a parting layer for glass articles in a glass stack for a ceramming process that transforms the glass articles into glass-ceramic articles.
Abstract:
A shaped article for use in a separation device may be produced by forming a batch mixture that includes filler material, fibrous material, and an inorganic binder, and shaping the batch mixture into a shaped structure. The fibrous material may have a D50 of greater than or equal to about 4 microns. The batch mixture may include greater than or equal to about 60 parts by weight and less than or equal to about 98 parts by weight of filler material, greater than or equal to about 2 parts by weight and less than or equal to about 40 parts by weight of fibrous material, and greater than or equal to about 10 parts by weight and less than or equal to about 50 parts by weight of inorganic binder per 100 parts by weight of the sum of the filler material and fibrous material, respectively.
Abstract:
Coated glass articles for a glass-ceramic ceramming process including a parting agent coated on a surface of the glass article. The parting agent coating can comprise an aqueous dispersion comprising amorphous silicon dioxide agglomerate particles and a dispersant. The parting agent coating can be dried to forming a parting layer for glass articles in a glass stack for a ceramming process that transforms the glass articles into glass-ceramic articles.
Abstract:
Honeycomb bodies and methods for treating a honeycomb bodies that include a skin surrounding a matrix of cells, the skin and the matrix of cells comprising a porous inorganic material. Methods include applying a buffer solution to only the porous inorganic material of the skin and coating the porous inorganic material of the skin with an oxide slurry. The oxide slurry includes an oxide or a precursor of the oxide configured to increase the isostatic strength of the honeycomb body. After treatment, the honeycomb body may be dried.
Abstract:
Sorbent substrates for CO2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.
Abstract:
Honeycomb bodies and methods for treating a honeycomb bodies that include a skin surrounding a matrix of cells, the skin and the matrix of cells comprising a porous inorganic material. Methods include applying a buffer solution to only the porous inorganic material of the skin and coating the porous inorganic material of the skin with an oxide slurry. The oxide slurry includes an oxide or a precursor of the oxide configured to increase the isostatic strength of the honeycomb body. After treatment, the honeycomb body may be dried.
Abstract:
Sorbent substrates for CO2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.