Abstract:
The present invention, in one aspect, provides methods and systems for controlling slugs using temperature dependent fluorescent dyes. In some embodiments, the present invention uses one or more techniques to enhance the visibility of slugs, enhance a system's ability to differentiate between slugs, and enhance a system's ability to identify the positions of slugs.
Abstract:
The present invention relates to systems and methods for the real time processing of nucleic acid during polymerase chain reaction (PCR) and thermal melt applications. According to an aspect of the invention, a system for the rapid serial processing of multiple nucleic acid assays is provided. In one embodiment, the system includes, but is not limited to: a microfluidic cartridge having microfluidic (flow-through) channels, a fluorescence imaging system, a temperature measurement and control system; a pressure measurement and control system for applying variable pneumatic pressures to the microfluidic cartridge; a storage device for holding multiple reagents (e.g., a well-plate); a liquid handling system comprising at least one robotic pipettor for aspirating, mixing, and dispensing reagent mixtures to the microfluidic cartridge; systems for data storage, processing, and output; and a system controller to coordinate the various devices and functions.
Abstract:
The present invention relates to systems and methods for the real time processing of nucleic acid during polymerase chain reaction (PCR) and thermal melt applications. According to an aspect of the invention, a system for the rapid serial processing of multiple nucleic acid assays is provided. In one embodiment, the system includes, but is not limited to: a microfluidic cartridge having microfluidic (flow-through) channels, a fluorescence imaging system, a temperature measurement and control system; a pressure measurement and control system for applying variable pneumatic pressures to the microfluidic cartridge; a storage device for holding multiple reagents (e.g., a well-plate); a liquid handling system comprising at least one robotic pipettor for aspirating, mixing, and dispensing reagent mixtures to the microfluidic cartridge; systems for data storage, processing, and output; and a system controller to coordinate the various devices and functions.
Abstract:
Methods, devices, and systems for performing polymerase chain reaction (PCR) amplification and melt data acquisition according to a single slug approach in which a single slug in a microfluidic channel fills an entire thermal zone of the microfluidic channel, and the thermal zone used for both PCR temperature cycling and melt data acquisition. A detector may be configured to detect fluorescence from the thermal zone during the PCR temperature cycling for real-time PCR and/or during temperature ramping in the melt data acquisition. Slug position control may be achieved by detecting leading or trailing edges in a slug build target zone into which a slug passes after passing through the thermal zone. The single slug approach may break coupling between one or more events of the PCR amplification and melt data acquisition and enable events to be independently optimized.
Abstract:
Methods, devices, and systems for performing polymerase chain reaction (PCR) amplification and melt data acquisition according to a single slug approach in which a single slug in a microfluidic channel fills an entire thermal zone of the microfluidic channel, and the thermal zone used for both PCR temperature cycling and melt data acquisition. A detector may be configured to detect fluorescence from the thermal zone during the PCR temperature cycling for real-time PCR and/or during temperature ramping in the melt data acquisition. Slug position control may be achieved by detecting leading or trailing edges in a slug build target zone into which a slug passes after passing through the thermal zone. The single slug approach may break coupling between one or more events of the PCR amplification and melt data acquisition and enable events to be independently optimized.
Abstract:
Methods, devices, and systems for performing polymerase chain reaction (PCR) amplification and melt data acquisition according to a single slug approach in which a single slug in a microfluidic channel fills an entire thermal zone of the microfluidic channel, and the thermal zone used for both PCR temperature cycling and melt data acquisition. A detector may be configured to detect fluorescence from the thermal zone during the PCR temperature cycling for real-time PCR and/or during temperature ramping in the melt data acquisition. Slug position control may be achieved by detecting leading or trailing edges in a slug build target zone into which a slug passes after passing through the thermal zone. The single slug approach may break coupling between one or more events of the PCR amplification and melt data acquisition and enable events to be independently optimized.