摘要:
A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
摘要:
A method for catalytic oxidation of NO to NO2 in the sulfur-containing exhaust gases of lean-burn engines, such as diesel engines is disclosed. The catalysts are oxide perovskites with a credible likelihood of being sulfur-tolerant.
摘要:
A method for catalytic oxidation of NO to NO2 in the sulfur-containing exhaust gases of lean-burn engines, such as diesel engines is disclosed. The catalysts are oxide perovskites with a credible likelihood of being sulfur-tolerant.
摘要:
An internal combustion engine configured to operate in a compression-ignition combustion mode includes an exhaust aftertreatment system. The exhaust aftertreatment system includes a catalyst device fluidly coupled upstream of an ammonia-selective catalytic reduction device. The, catalyst device includes first, second, and third elements fluidly coupled in series. The first element includes a three-way catalytic element, the second element includes a NOx adsorber, and the third element includes an oxidation catalytic element.
摘要:
An exhaust gas aftertreatment system for treating an engine-out exhaust gas feedstream of a spark-ignition direct-injection engine includes a multi-stage catalytic converter comprising a converter inlet, a converter outlet, and a substrate having a first end associated with the converter inlet and a second end associated with the converter outlet. The substrate further includes a multiplicity of flow passages between the first and second ends of the substrate, a first surface location corresponding to the first end of the substrate, and a second surface location corresponding to the second end of the substrate. The first and second washcoat stages include washcoats formulated to generate hydrogen and ammonia from the engine-out exhaust gas feedstream. An ammonia-selective catalytic reduction device is downstream of the first and second washcoat stages.
摘要:
An exhaust aftertreatment system that receives an exhaust flow from a lean-burn engine and a method for treating the exhaust flow are described. The exhaust aftertreatment system may include a three-way-catalyst, an oxidation catalyst, and a NH3—SCR catalyst. The three-way-catalyst passively generates NH3 from native NOX contained in the exhaust flow when an A/F mixture supplied to the engine is cycled from lean to rich. The generated NH3 is then stored in the NH3—SCR catalyst to facilitate NOX reduction when the A/F mixture supplied to the engine is cycled back to lean. The oxidation catalyst is located upstream of the NH3—SCR catalyst and operates to lower the NO to NO2 molar ratio of the NOX fed to the NH3—SCR catalyst. The oxidation catalyst comprises perovskite oxide particles.
摘要:
The oxidation of carbon monoxide (CO) and hydrocarbons (HC) in an oxygen-containing gas stream, such as the exhaust stream from a diesel engine, or other lean-burn engine, may be catalyzed using a combination of mixed oxide particles of cerium, zirconium and copper, and discrete particles of an alumina-supported platinum group metal catalyst. The catalyzed oxidation of CO and HC by this combination of oxidation catalyst particles is effective at temperatures below 300° C.
摘要:
Ammonia in a gas stream comprising oxygen and nitrogen may be effectively completely oxidized to a mixture of NO and NO2 for further processing to nitric acid. The gas stream is flowed over fine particles of La1-xSrxCoO3 and/or La1-xSrxMnO3, and/or La1-xSrxFeO3 where x=about 0.1, 0.2, or 0.3. The particles are supported as catalyst layers on gas stream-contacting surfaces of a flow-through catalyzed oxidation reactor. These relatively inexpensive perovskite-type materials may be used to promote oxidation of ammonia at temperatures below about 450° C. to about 500° C. to selectively produce a mixture of NO and NO2. This mixture is suitable for further oxidation to NO2 for adsorption into water to make nitric acid.
摘要:
An exhaust gas aftertreatment system for treating an engine-out exhaust gas feedstream of a spark-ignition direct-injection engine includes a multi-stage catalytic converter comprising a converter inlet, a converter outlet, and a substrate having a first end associated with the converter inlet and a second end associated with the converter outlet. The substrate further includes a multiplicity of flow passages between the first and second ends of the substrate, a first surface location corresponding to the first end of the substrate, and a second surface location corresponding to the second end of the substrate. A first washcoat stage is applied to the substrate at the first surface location corresponding to the first end of the substrate. A second washcoat stage is applied to the substrate at the second surface location corresponding to the second end of the substrate. The first and second washcoat stages include washcoats formulated to generate hydrogen and ammonia from the engine-out exhaust gas feedstream. An ammonia-selective catalytic reduction device is downstream of the first and second washcoat stages.