摘要:
A method and apparatus for operating a very high repetition gas discharge laser system magnetic switch pulsed power system is disclosed, which may comprise a solid state switch, a charging power supply electrically connected to one side of the solid state switch; a charging inductor electrically connected to the other side of the solid state switch; a deque circuit electrically in parallel with the solid state switch comprising a deque switch; a peaking capacitor electrically connected to the charging inductor, a peaking capacitor charging control system operative to charge the peaking capacitor by opening the deque switch and leaving the solid state switch open and then shutting the solid state switch. The solid state switch may comprise a plurality of solid state switches electrically in parallel.
摘要:
High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
摘要:
Transmit parallel interfaces and methods are provided in which a clock signal is generated that maximizes the setup and hold window of input data. In at least some embodiments, a divider circuit provides a clock signal in one clock domain that has a rising edge located very close to the falling edge of a system clock in another clock domain.
摘要:
A method and apparatus generates output clock pulses, having leading and trailing edges that are adjusted in a pulse forming processor, according to the relative phase of an output clock and output data. Dynamic adjustment of the leading and trailing edges of output clock pulses improves the performance of high-speed devices significantly.
摘要:
Disclosed are methods and circuits that support different on-die termination (ODT) schemes for a plurality of signaling schemes using a relatively small number of external calibration pads. These methods and circuits develop control signals for calibrating any of multiple termination schemes that might be used by associated communication circuits. The ODT control circuits, entirely or predominantly instantiated on-die, share circuit resources employed in support of the different termination schemes to save die area.
摘要:
A geometric DAC architecture includes a series of substantially identical sub-DACs, each sub-DAC having n taps. The sub-DACs are fed from a bias-DAC having m=(total number of taps needed)/n taps. The output of each of the m taps is increased geometrically at a rate of kn. The geometric DAC architecture control lines desirably require only (m+n) taps compared with (m×n) taps for the simpler more conventional approach. Further, the geometric DAC architecture requires less real estate than the simpler more conventional approach, is easy to expand because it is modular, and generates an output current that is always monotonic, regardless of errors in transistor sizes and PVT variations. The n tap control lines are coded by alternately inverting n control line inputs between sub-DACs such that any state transition associated with the geometric DAC occurs with only one bit change in each of the control lines.
摘要:
High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
摘要:
An apparatus and method for producing dummy data is based on timing paths co-located with the address/data paths of the memory. An output clock generator uses the dummy data. The technique for producing dummy data is particularly important for memory systems in which the output of memory cells do not normally provide large voltage swings, making them less practical for self timing approaches to dummy data generation.
摘要:
An output clock for a memory device having a read latency more than one clock cycle includes a clock generator at a central location on the device. A clock channel couples the clock generator to output structures. A timing path emulates the address/data paths in the memory, and is responsive to an address emulation signal produced by the clock generator to provide dummy data near the output structures. An output clock signal with an adjustable phase and a dummy data reference clock signal on the input of the clock channel are generated. A phase detector near the output structures, determines whether the output clock is early, late or on time with respect to the dummy data. Logic signals are produced at the phase detector, and returned to the clock generator for adjusting the relative phase of the output clock signal.
摘要:
A delay line for an adjustable, high speed clock generator is based on two-stage multiplexing, in which for all pairs of adjacent taps, a change from a current tap to an adjacent tap in the pair is executed by switching only one of the first stage and second stage multiplexers. Control signals are generated for the first and second stage multiplexers by logic based on bidirectional shift registers. The delay line is suitable for generation of an output clock having an adjustable phase, allowing for smooth, glitch-free adjustment over a large range of phases.