Abstract:
A method of forming a semiconductor structure includes providing a semiconductor substrate; forming a gate dielectric over the semiconductor substrate, wherein the semiconductor substrate and a sidewall of the gate dielectric has a joint point; forming a gate electrode over the gate dielectric; forming a mask layer over the semiconductor substrate and the gate electrode, wherein a first portion of the mask layer adjacent the joint point is at least thinner than a second portion of the mask layer away from the joint point; after the step of forming the mask layer, performing a halo/pocket implantation to introduce a halo/pocket impurity into the semiconductor substrate; and removing the mask layer after the halo/pocket implantation.
Abstract:
MOSFETs having stacked metal gate electrodes and methods of making the same are provided. The MOSFET gate electrode includes a gate metal layer formed atop a high-k gate dielectric layer. The metal gate electrode is formed through a low oxygen content deposition process without charged-ion bombardment to the wafer substrate. Metal gate layer thus formed has low oxygen content and may prevent interfacial oxide layer regrowth. The process of forming the gate metal layer generally avoids plasma damage to the wafer substrate.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device that includes forming a high-k dielectric over a substrate, forming a first metal layer over the high-k dielectric, forming a second metal layer over the first metal layer, forming a first silicon layer over the second metal layer, implanting a plurality of ions into the first silicon layer and the second metal layer overlying a first region of the substrate, forming a second silicon layer over the first silicon layer, patterning a first gate structure over the first region and a second gate structure over a second region, performing an annealing process that causes the second metal layer to react with the first silicon layer to form a silicide layer in the first and second gate structures, respectively, and driving the ions toward an interface of the first metal layer and the high-k dielectric in the first gate structure.
Abstract:
A semiconductor device and method for fabricating a semiconductor device for providing improved work function values and thermal stability is disclosed. The semiconductor device comprises a semiconductor substrate; an interfacial dielectric layer over the semiconductor substrate; a high-k gate dielectric layer over the interfacial dielectric layer; and a doped-conducting metal oxide layer over the high-k gate dielectric layer.
Abstract:
A semiconductor device and method of manufacturing are provided that include forming an alloy layer having the formula MbX over a silicon-containing substrate, where Mb is a metal and X is an alloying additive, the alloy layer being annealed to form a metal alloy silicide layer on the gate region and in active regions of the semiconductor device.
Abstract:
A semiconductor device includes at least one first gate dielectric layer over a substrate. A first transition-metal oxycarbide (MCxOy) containing layer is formed over the at least one first gate dielectric layer, wherein the transition-metal (M) has an atomic percentage of about 40 at. % or more. A first gate is formed over the first transition-metal oxycarbide containing layer. At least one first doped region is formed within the substrate and adjacent to a sidewall of the first gate.
Abstract:
A method of inhibiting the cellular proliferation of at least one selected from the group consisting of androgen dependent prostate cancer cells, androgen independent prostate cancer cells, oral cancer cells, liver cancer cells (hepatoma), and gastric cancer cells in a subject is provided, wherein the method comprises administrating to the subject an effective amount of an active component selected from the group consisting of Z form isochaihulactone (Z-K8) of the following formula (I), E form isochaihulactone (E-K8) of the following formula (II), a pharmaceutically acceptable salt of Z-K8 or E-K8, a pharmaceutically acceptable ester of Z-K8 or E-K8, and combinations thereof: and R is H, alkoxy, or aryl. Also provided is a method for manufacturing Z-K8 and E-K8.
Abstract:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
Abstract:
A semiconductor device includes at least one first gate dielectric layer over a substrate. A first transition-metal oxycarbide (MCxOy) containing layer is formed over the at least one first gate dielectric layer, wherein the transition-metal (M) has an atomic percentage of about 40 at. % or more. A first gate is formed over the first transition-metal oxycarbide containing layer. At least one first doped region is formed within the substrate and adjacent to a sidewall of the first gate.
Abstract:
Provided is a method of fabrication a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, the gate structure including a gate dielectric and a gate electrode disposed over the gate dielectric, forming source/drain regions in the semiconductor substrate at either side of the gate structure, forming a metal layer over the semiconductor substrate and the gate structure, the metal layer including a refractory metal layer or a refractory metal compound layer; forming an alloy layer over the metal layer; and performing an annealing thereby forming metal alloy silicides over the gate structure and the source/drain regions, respectively.