摘要:
A method of structures having dual gate oxide thicknesses, comprising the following steps. A substrate having first and second pillars is provided. The first and second pillars each having an outer side wall and an inner side wall. At least one of the outer or inner side walls of at least one of the first and second pillars is/are masked leaving at least one of the outer or inner side walls of at least one of the first and second pillars exposed. Dopants are then implanted through the at least one of the exposed outer or inner side walls modifying the surface of the at least one of the doped exposed outer or inner side walls. The at least one of the masked outer or inner side walls of at least one of the first and second pillars is/are unmasked. Gate oxide is grown on the outer side walls and the inner side walls of the first and second pillars wherein the gate oxide grown upon the modified surfaces of the at least one of the doped outer or inner side walls is thicker than the gate oxide grown upon the non-modified surfaces of the at least one of the non-doped outer or inner side walls.
摘要:
A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
摘要:
A method of fabricating dual gate oxide thicknesses comprising the following steps. A substrate is provided having a first pillar and a second pillar. A gate dielectric layer is formed over the substrate and the first and second pillars. First and second thin spacers are formed over the gate dielectric layer covered side walls of the first and second pillars respectively. The second pillar is masked leaving the first pillar unmasked. The first thin spacers are removed from the unmasked first pillar. The mask is removed from the masked second pillar. The structure is oxidized to convert the second thin spacers to second preliminary gate oxide over the previously masked second pillar and to form first preliminary gate oxide over the unmasked first pillar. The second gate oxide over the second pillar being thicker than the first gate oxide over the first pillar. The thinner first preliminary gate oxide is removed from over the first pillar and the thicker second preliminary gate oxide is thinned from over the second pillar. First final gate oxide is formed over the first pillar and second final gate oxide is formed on the second pillar. The second final gate oxide including the thinned second preliminary gate oxide. The second final gate oxide over the second pillar being thicker than the first final gate oxide over the first pillar.
摘要:
A method of forming narrow gates comprising the following steps. A substrate is provided having an overlying Si3N4 or an SiO2/Si3N4 stack gate dielectric layer. A gate material layer is formed over the gate dielectric layer. A hard mask layer is formed over the gate material layer. The hard mask layer and the gate material layer are patterned to form a hard mask/gate material layer stack. A planarized dielectric layer is formed surrounding the hard mask/gate material layer stack. The patterned hard mask layer is removed from over the patterned gate material layer to form a cavity having exposed dielectric layer side walls. Masking spacers are formed on the exposed dielectric layer side walls over a portion of the patterned gate material layer. The patterned gate material layer is etched using the masking spacers as masks to expose a portion of the gate dielectric layer. The planarized dielectric layer is removed. The masking spacers are removed to form narrow gates comprising gate material.
摘要翻译:一种形成窄门的方法,包括以下步骤。 提供具有覆盖的Si 3 N 4或SiO 2 / Si 3 N 4堆叠栅极介电层的衬底。 栅极材料层形成在栅极介电层上。 在栅极材料层上形成硬掩模层。 图案化硬掩模层和栅极材料层以形成硬掩模/栅极材料层堆叠。 形成围绕硬掩模/栅极材料层叠层的平坦化介电层。 图案化的硬掩模层从图案化的栅极材料层上去除以形成具有暴露的电介质层侧壁的空腔。 屏蔽间隔物形成在图案化栅极材料层的一部分上的暴露的电介质层侧壁上。 使用掩模间隔物作为掩模蚀刻图案化的栅极材料层,以露出栅极电介质层的一部分。 去除平坦化的介电层。 去除掩模间隔物以形成包括栅极材料的窄门。
摘要:
A method of forming small features, comprising the following steps. A substrate having a dielectric layer formed thereover is provided. A spacing layer is formed over the dielectric layer. The spacing layer has a thickness equal to the thickness of the small feature to be formed. A patterned, re-flowable masking layer is formed over the spacing layer. The masking layer having a first opening with a width “L”. The patterned, re-flowable masking layer is re-flowed to form a patterned, re-flowed masking layer having a re-flowed first opening with a lower width “1”. The re-flowed first opening lower width “1” being less than the pre-reflowed first opening width “L”. The spacing layer is etched down to the dielectric layer using the patterned, re-flowed masking layer as a mask to form a second opening within the etched spacing layer having a width equal to the re-flowed first opening lower width “1”. Removing the patterned, re-flowed masking layer. A small feature material is then formed within the second opening and any excess small feature material above the etched spacing layer is removed. The etched spacing layer is removed to form the small feature comprised of the small feature material.
摘要:
A method of fabricating a dual gate electrode CMOS device having dual gate electrodes. An N+ poly gate is used for the nMOSFET and a metal gate is used for the pMOSFET. The N+ nMOSFET poly gate may be capped with a highly conductive metal to reduce its gate resistance. A sacrificial cap is used for the N+ poly gate to eliminate a mask level for the dual gate electrodes.
摘要:
A method of forming small features, comprising the following steps. A substrate having a dielectric layer formed thereover is provided. A spacing layer is formed over the dielectric layer. The spacing layer has a thickness equal to the thickness of the small feature to be formed. A patterned, re-flowable masking layer is formed over the spacing layer. The masking layer having a first opening with a width “L”. The patterned, re-flowable masking layer is re-flowed to form a patterned, re-flowed masking layer having a re-flowed first opening with a lower width “l”. The re-flowed first opening lower width “l” being less than the pre-re-flowed first opening width “L”. The spacing layer is etched down to the dielectric layer using the patterned, re-flowed masking layer as a mask to form a second opening within the etched spacing layer having a width equal to the re-flowed first opening lower width “l”. Removing the patterned, re-flowed masking layer. A small feature material is then formed within the second opening and any excess small feature material above the etched spacing layer is removed. The etched spacing layer is removed to form the small feature comprised of the small feature material.
摘要:
A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
摘要:
The present disclosure provides for a method and system for fabricating an insulating layer on a substrate. The method and system provide a fluid to a substrate, wherein the fluid is provided in an aerosol form. The method and system also provides for generating a supercritical process environment proximate to the substrate. The method and system further provides a proximate supercritical process environment having a supercritical process temperature and a supercritical process pressure for altering the fluid, and placing the substrate in contact with the altered fluid, wherein the insulating layer is formed on the substrate by a reaction between the substrate and the fluid.
摘要:
A new method of forming a damascene interconnect in the manufacture of an integrated circuit device has been achieved. The damascene interconnect may be a single damascene or a dual damascene. Copper conductors are provided overlying a semiconductor substrate. A first passivation layer is provided overlying the copper conductors. A low dielectric constant layer is deposited overlying the first passivation layer. An optional capping layer is deposited overlying the low dielectric constant layer. A photoresist layer is deposited overlying the capping layer. The capping layer and the low dielectric constant layer are etched through to form via openings. The photoresist layer is simultaneously stripped away while forming a sidewall passivation layer on the sidewalls of the via openings using a sulfur-containing gas. Sidewall bowing and via poisoning are thereby prevented. The first passivation layer is etched through to expose the underlying copper conductors. A copper layer is deposited overlying the capping layer and filling the via openings. The copper layer is polished down to complete the damascene interconnects in the manufacture of the integrated circuit device.