摘要:
A method for forming a polycrystalline silicon thin film, comprising steps of: providing a substrate; forming an amorphous silicon thin film on the substrate; and inducing a plurality of eddy currents to heat up the substrate such that the amorphous silicon thin-film is annealed to form the polycrystalline silicon thin film.
摘要:
The prevent invention discloses a structure of thermal resistive layer and the method of forming the same. The thermal resistive structures, formed on a plastic substrate, comprises a porous layer, formed on said plastic substrate, including a plurality of oxides of hollow structure, and a buffer layer, formed on said porous layer, wherein said porous layer can protect said plastic substrate from damage caused by the heat generated during manufacturing process. With the structure and method disclosed above, making a thin film transistor and forming electronic devices on the plastic substrate in the technology of Low Temperature PolySilicon, i.e. LTPS, without changing any parameters is easy to carry out.
摘要:
A low temperature poly-silicon thin film element, method of making poly-silicon thin film by direct deposition at low temperature, and the inductively-coupled plasma chemical vapor deposition equipment utilized, wherein the poly-silicon material is induced to crystallize into a poly-silicon thin film at low temperature by means of high density plasma and substrate bias voltage. Furthermore, the atom structure of the poly-silicon thin film is aligned in regular arrangement by making use of the induction layer having optimal orientation and lattice constant close to that of the silicon, thus raising the crystallization quality of the poly-silicon thin film and reducing the thickness of the incubation layer.
摘要:
The prevent disclosure discloses a structure of thermal resistive layer and the method of forming the same. The thermal resistive structures, formed on a plastic substrate, comprises a porous layer, formed on said plastic substrate, including a plurality of oxides of hollow structure, and a buffer layer, formed on said porous layer, wherein said porous layer can protect said plastic substrate from damage caused by the heat generated during manufacturing process. With the structure and method disclosed above, making a thin film transistor and forming electronic devices on the plastic substrate in the technology of Low Temperature PolySilicon, i.e. LTPS, without changing any parameters is possible.
摘要:
The prevent invention discloses a structure of thermal resistive layer and the method of forming the same. The thermal resistive structures, formed on a plastic substrate, comprises a porous layer, formed on said plastic substrate, including a plurality of oxides of hollow structure, and a buffer layer, formed on said porous layer, wherein said porous layer can protect said plastic substrate from damage caused by the heat generated during manufacturing process. With the structure and method disclosed above, making a thin film transistor and forming electronic devices on the plastic substrate in the technology of Low Temperature PolySilicon, i.e. LTPS, without changing any parameters is easy to carry out.
摘要:
The prevent invention discloses a structure of thermal resistive layer and the method of forming the same. The thermal resistive structures, formed on a plastic substrate, comprises a porous layer, formed on said plastic substrate, including a plurality of oxides of hollow structure, and a buffer layer, formed on said porous layer, wherein said porous layer can protect said plastic substrate from damage caused by the heat generated during manufacturing process. With the structure and method disclosed above, making a thin film transistor and forming electronic devices on the plastic substrate in the technology of Low Temperature PolySilicon, i.e. LTPS, without changing any parameters is easy to carry out.
摘要:
A method of fabricating a clamping device for a flexible substrate is provided. A carrier board having a first positing holes and a plurality of second position holes is provided, wherein the first and the second position holes correspond in position to a plurality of through holes on the flexible substrate. A portion of the carrier board material close to the second position holes is removed to form a hole body and a plurality of curved extending arms connected to the hole body and the carrier board. A first dowel pin and a plurality of second dowel pins are provided for inserting into the first positioning hole and the second positioning holes, respectively.
摘要:
A method of fabricating a clamping device for a flexible substrate is provided. A carrier board is provided. A plurality of holes is formed in the carrier board. A fixed positioning assembly and a movable positioning assembly are respectively embedded in the plurality of holes.
摘要:
A thin film solar cell module of see-through type having cells connected in series and disposed on an opaque substrate with holes is provided. The thin film solar cell module includes a first electrode, a second electrode, and a photoelectric conversion layer disposed between the first electrode and the second electrode. The first electrode is disposed on the opaque substrate and is composed of a first comb electrode and block-like first electrodes. The second electrode is disposed above the first electrode and is composed of a second comb electrode and block-like second electrodes. A portion of the block-like first electrodes, a portion of the opaque substrate, and the holes are exposed between the second comb electrode and the block-like second electrodes. The second comb electrode and the first comb electrode are disposed symmetrically, and the block-like first electrodes and the block-like second electrodes are disposed by parallel displacement.
摘要:
A clamping device for a flexible substrate is provided. The clamping device includes a carrier board. The carrier board has a fixed positioning assembly and a plurality of movable positioning assemblies. The fixed positioning assembly and the movable positioning assemblies are disposed in locations that almost correspond to a plurality of through holes on the flexible substrate. The fixed positioning assembly includes a hole body with a positioning hole and a dowel pin. Each movable positioning assembly includes a hole body with a positioning hole, a plurality of curved extending arms and a dowel pin. Each curved extending arm is connected to the hole body and the carrier board and the dowel pin is inserted into the positioning hole.