摘要:
A packaging method for light emitting diodes provides both high light extraction and heat dissipation using a transparent vertical stand structure. A light emitting diode (LED) is attached to a vertical stand structure for supporting the LED, wherein the LED is bonded to the vertical stand structure, so that one of the LED's sides faces vertically upwards, another of the LED's sides faces vertically downwards, a top surface of the LED faces horizontally sideways in one direction, and a bottom surface of the LED faces horizontally sideways in another direction. The vertical stand structure comprises a connecting stem between the LED and a header, and is made of a material that provides for heat dissipation and may also be transparent to light generated in the LED, such as sapphire or zinc oxide. The LED and the vertical stand structure may be encapsulated within a mold.
摘要:
A light emitting diode (LED) device structure with a reduced Droop effect, and a method for fabricating the LED device structure. The LED is a III-nitride-based LED having an active layer or emitting layer comprised of a multi-quantum-well (MQW) structure, wherein there are eight or more quantum wells (QWs) in the MQW structure, and more preferably, at least nine QWs in the MQW structure. Moreover, the QWs in the MQW structure are grown at temperatures different from barrier layers in the MQW structure, wherein the barrier layers in the MQW structure are grown a temperatures at least 40° C. higher than the QWs in the MQW structure.
摘要:
A III-nitride light emitting diode grown on a semipolar {20-2-1} plane of a substrate and characterized by high power, high efficiency and low efficiency droop.
摘要:
A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.
摘要:
A high brightness III-Nitride based Light Emitting Diode (LED), comprising multiple surfaces covered by Zinc Oxide (ZnO) layers, wherein the ZnO layers are grown in a low temperature aqueous solution and each have a (0001) c-orientation and a top surface that is a (0001) plane.
摘要:
A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.
摘要:
A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
摘要:
A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
摘要:
A high brightness III-Nitride based Light Emitting Diode (LED), comprising multiple surfaces covered by Zinc Oxide (ZnO) layers, wherein the ZnO layers are grown in a low temperature aqueous solution and each have a (0001) c-orientation and a top surface that is a (0001) plane.