摘要:
A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.
摘要:
A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.
摘要:
A Group-III nitride optoelectronic device fabricated on a semipolar (20-2-1) plane of a Gallium Nitride (GaN) substrate is characterized by a high Indium uptake and a high polarization ratio.
摘要:
A III-nitride light emitting diode grown on a semipolar {20-2-1} plane of a substrate and characterized by high power, high efficiency and low efficiency droop.
摘要:
A light emitting diode (LED) device structure with a reduced Droop effect, and a method for fabricating the LED device structure. The LED is a III-nitride-based LED having an active layer or emitting layer comprised of a multi-quantum-well (MQW) structure, wherein there are eight or more quantum wells (QWs) in the MQW structure, and more preferably, at least nine QWs in the MQW structure. Moreover, the QWs in the MQW structure are grown at temperatures different from barrier layers in the MQW structure, wherein the barrier layers in the MQW structure are grown a temperatures at least 40° C. higher than the QWs in the MQW structure.
摘要:
A method for fabricating AlxGa1-xN-cladding-free nonpolar III-nitride based laser diodes or light emitting diodes. Due to the absence of polarization fields in the nonpolar crystal planes, these nonpolar devices have thick quantum wells that function as an optical waveguide to effectively confine the optical mode to the active region and eliminate the need for Al-containing waveguide cladding layers.
摘要翻译:一种制造Al x Ga 1-x N不包覆非极性III族氮化物基激光二极管或发光二极管的方法。 由于在非极性晶面中没有极化场,这些非极性器件具有用作光波导的厚量子阱,以有效地将光学模式限制在有源区,并且不需要含Al波导覆层。
摘要:
A method for fabricating AlxGa1-xN-cladding-free nonpolar III-nitride based laser diodes or light emitting diodes. Due to the absence of polarization fields in the nonpolar crystal planes, these nonpolar devices have thick quantum wells that function as an optical waveguide to effectively confine the optical mode to the active region and eliminate the need for Al-containing waveguide cladding layers.
摘要翻译:一种制造Al x Ga 1-x N不包覆非极性III族氮化物基激光二极管或发光二极管的方法。 由于在非极性晶面中没有极化场,这些非极性器件具有用作光波导的厚量子阱,以有效地将光学模式限制在有源区,并且不需要含Al波导覆层。
摘要:
Optical gain of a nonpolar or semipolar Group-III nitride diode laser is controlled by orienting an axis of light propagation in relation to an optical polarization direction or crystallographic orientation of the diode laser. The axis of light propagation is substantially perpendicular to the mirror facets of the diode laser, and the optical polarization direction is determined by the crystallographic orientation of the diode laser. To maximize optical gain, the axis of light propagation is oriented substantially perpendicular to the optical polarization direction or crystallographic orientation.
摘要:
A method for fabricating AlxGa1-xN-cladding-free nonpolar III-nitride based laser diodes or light emitting diodes. Due to the absence of polarization fields in the nonpolar crystal planes, these nonpolar devices have thick quantum wells that function as an optical waveguide to effectively confine the optical mode to the active region and eliminate the need for Al-containing waveguide cladding layers.
摘要翻译:一种用于制造Al x Ga 1-x N不包覆非极性III族氮化物基激光二极管或发光二极管的方法。 由于在非极性晶面中没有极化场,这些非极性器件具有用作光波导的厚量子阱,以有效地将光学模式限制在有源区,并且不需要含Al波导覆层。