摘要:
An anti-reflective hard mask layer left on a radiation-blocking layer during fabrication of a reticle provides functionality when the reticle is used in a semiconductor device manufacturing process.
摘要:
We have reduced the critical dimension bias for reticle fabrication. Pattern transfer to the radiation-blocking layer of the reticle substrate essentially depends upon use of a hard mask to which the pattern is transferred from a photoresist. The photoresist pull back which occurs during pattern transfer to the hard mask is minimalized. In addition, a hard mask material having anti-reflective properties which are matched to the reflective characteristics of the radiation-blocking layer enables a reduction in critical dimension size and an improvement in the pattern feature integrity in the hard mask itself. An anti-reflective hard mask layer left on the radiation-blocking layer provides functionality when the reticle is used in a semiconductor device manufacturing process.
摘要:
A layer of antireflective coating (ARC) material for use in photolithographic processing. In one embodiment the ARC material has the formula SiwOxHy:Cz, where w, x, y and z represent the atomic percentage of silicon, oxygen, hydrogen and carbon, respectively, in the material and where w is between 35 and 55, x is between 35 and 55, y is between 4 and 15, z is between 0 and 3 and the atomic percentage of nitrogen in the material is less than or equal to 1 atomic percent.
摘要翻译:用于光刻处理的一层抗反射涂层(ARC)材料。 在一个实施方案中,ARC材料具有式SiwO x H y:Cz,其中w,x,y和z分别表示材料中硅,氧,氢和碳的原子百分比,其中w在35和55之间,x是 在35和55之间,y在4和15之间,z在0和3之间,材料中氮的原子百分比小于或等于1原子%。
摘要:
A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer. Substructures formed in the fabrication process are also described. Spacers are also shown to be favorably employed in making feature-in-feature structures.
摘要:
A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
摘要:
A method is provided for processing a substrate surface by delivering a first gas mixture comprising a first organosilicon compound, a first oxidizing gas, and one or more hydrocarbon compounds into a chamber at deposition conditions sufficient to deposit a first low dielectric constant film on the substrate surface. A second gas mixture having a second organosilicon compound and a second oxidizing gas is delivered into the chamber at deposition conditions sufficient to deposit a second low dielectric constant film on the first low dielectric constant film. The flow rate of the second oxidizing gas into the chamber is increased, and the flow rate of the second organosilicon compound into the chamber is decreased to deposit an oxide rich cap on the second low dielectric constant film.
摘要:
A method is provided for processing a substrate including removing amorphous carbon material disposed on a low k dielectric material with minimal or reduced defect formation and minimal dielectric constant change of the low k dielectric material. In one aspect, the invention provides a method for processing a substrate including depositing at least one dielectric layer on a substrate surface, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less, forming amorphous carbon material on the at least one dielectric layer, and removing the one or more amorphous carbon layers by exposing the one or more amorphous carbon layers to a plasma of a hydrogen-containing gas.
摘要:
A method and apparatus for reducing oxidation of an interface of a semiconductor device thereby improving adhesion of subsequently formed layers and/or devices is disclosed. The semiconductor device has at least a first layer and a second layer wherein the interface is disposed between said first and second layers. The method includes the steps of providing the first layer having a partially oxidized interface; introducing a hydrogen-containing plasma to the interface; reducing the oxidized interface and introducing second-layer-forming compounds to the hydrogen-containing plasma. A concomitant apparatus (i.e., a semiconductor device interface) has a first insulating layer, one or more conductive devices disposed within the insulating layer, the insulating layer and conductive devices defining the interface, wherein the interface is treated with a continuous plasma treatment to remove oxidation and deposit a second layer thereupon. The insulating layer of the interface is selected from oxides and nitrides and is preferably a nitride.
摘要:
A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
摘要:
Embodiments of the present invention pertain to methods of forming patterned features on a substrate having a reduced pitch in two dimensions as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask. A spacer layer is formed over a two-dimensional square grid of cores with a thickness chosen to leave a dimple at the center of four cores on the corners of a square. The spacer layer is etched back to reveal the substrate at the centers of the square. Removing the core material results in double the pattern density of the lithographically defined grid of cores. The regions of exposed substrate may be filled again with core material and the process repeated to quadruple the pattern density.