Abstract:
A network device is configured to transmit acknowledgement packets according to the length of the egress queue. The network device receives data packets from one or more endpoints and buffers the data packets in an egress buffer before transmitting the data packets. The network device also receives acknowledgement packets that are sent in response to data packets previously transmitted by the network device. The network device buffers the acknowledgement packets in an acknowledgement buffer. The network device transmits the acknowledgement packets at an acknowledgment rate that is based on a queue length of the egress buffer.
Abstract:
A method in one embodiment includes intercepting a message in an on-board unit (OBU) of a vehicular network environment between a source and a receiver in the vehicular network environment, verifying the message is sent from the source, verifying the message is not altered, evaluating a set of source flow control policies associated with the source, and blocking the message if the set of source flow control policies indicate the message is not permitted. In specific embodiments, the message is not permitted if a level of access assigned to the source in the set of source flow control policies does not match a level of access tagged on the message. In further embodiments, the method includes evaluating a set of receiver flow control policies associated with the receiver, and blocking the message if the set of receiver flow control policies indicates the message is not permitted.
Abstract:
A first flowlet of a flow from a source network device to a destination network device is assigned to a first path of a plurality of paths between the source device and the destination device. The assignment of the first flowlet to the first path is made by a network connected device. A second flowlet is detected in response to an interruption in transmission of the flow due to congestion along the first path, wherein the interruption is longer in duration than a difference in a transmission time between the source network device and the destination network device along each of the plurality of paths. The second flowlet is assigned to a second path of the plurality of paths by the network connected device. According to some example embodiments, the second path is randomly selected from the plurality of paths.
Abstract:
A first flowlet of a flow from a source network device to a destination network device is assigned to a first path of a plurality of paths between the source device and the destination device. The assignment of the first flowlet to the first path is made by a network connected device. A second flowlet is detected in response to an interruption in transmission of the flow due to congestion along the first path, wherein the interruption is longer in duration than a difference in a transmission time between the source network device and the destination network device along each of the plurality of paths. The second flowlet is assigned to a second path of the plurality of paths by the network connected device. According to some example embodiments, the second path is randomly selected from the plurality of paths.
Abstract:
A method is provided in one example embodiment and includes determining whether a packet received at a network node in a communications network is a high priority packet; determining whether a low priority queue of the network node has been deemed to be starving; if the packet is a high priority packet and the low priority queue has not been deemed to be starving, adding the packet to a high priority queue, wherein the high priority queue has strict priority over the low priority queue; and if the packet is a high priority packet and the low priority queue has been deemed to be starving, adding the packet to the low priority queue.
Abstract:
A first flowlet of a flow from a source network device to a destination network device is assigned to a first path of a plurality of paths between the source device and the destination device. The assignment of the first flowlet to the first path is made by a network connected device. A second flowlet is detected in response to an interruption in transmission of the flow due to congestion along the first path, wherein the interruption is longer in duration than a difference in a transmission time between the source network device and the destination network device along each of the plurality of paths. The second flowlet is assigned to a second path of the plurality of paths by the network connected device. According to some example embodiments, the second path is randomly selected from the plurality of paths.
Abstract:
In one embodiment, an HTTP streaming session may be initiated at a client device in a network. The client device may have a buffer and may be configured to request and receive one or more data segments over HTTP from an HTTP server. A first data segment at a first data source rate may be requested and subsequently received. The first data segment may be stored in the buffer. A second data source rate may then be calculated based on a storage level in the buffer, and a second data segment at the second data source rate may be requested.
Abstract:
A system includes an on-board unit (OBU) in communication with an internal subsystem in a vehicle on at least one Ethernet network and a node on a wireless network. A method in one embodiment includes receiving a message on the Ethernet network in the vehicle, encapsulating the message to facilitate translation to Ethernet protocol if the message is not in Ethernet protocol, and transmitting the message in Ethernet protocol to its destination. Certain embodiments include optimizing data transmission over the wireless network using redundancy caches, dictionaries, object contexts databases, speech templates and protocol header templates, and cross layer optimization of data flow from a receiver to a sender over a TCP connection. Certain embodiments also include dynamically identifying and selecting an operating frequency with least interference for data transmission over the wireless network.
Abstract:
A first flowlet of a flow from a source network device to a destination network device is assigned to a first path of a plurality of paths between the source device and the destination device. The assignment of the first flowlet to the first path is made by a network connected device. A second flowlet is detected in response to an interruption in transmission of the flow due to congestion along the first path, wherein the interruption is longer in duration than a difference in a transmission time between the source network device and the destination network device along each of the plurality of paths. The second flowlet is assigned to a second path of the plurality of paths by the network connected device. According to some example embodiments, the second path is randomly selected from the plurality of paths.
Abstract:
In one embodiment, an HTTP streaming session may be initiated at a client device in a network. The client device may have a buffer and may be configured to request and receive one or more data segments over HTTP from an HTTP server. A first data segment at a first data source rate may be requested and subsequently received. The first data segment may be stored in the buffer. A second data source rate may then be calculated based on a storage level in the buffer, and a second data segment at the second data source rate may be requested.