摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
A non-planar transistor including partially melted raised semiconductor source/drains disposed on opposite ends of a semiconductor fin with the gate stack disposed there between. The raised semiconductor source/drains comprise a super-activated dopant region above a melt depth and an activated dopant region below the melt depth. The super-activated dopant region has a higher activated dopant concentration than the activated dopant region and/or has an activated dopant concentration that is constant throughout the melt region. A fin is formed on a substrate and a semiconductor material or a semiconductor material stack is deposited on regions of the fin disposed on opposite sides of a channel region to form raised source/drains. A pulsed laser anneal is performed to melt only a portion of the deposited semiconductor material above a melt depth.
摘要:
Laser anneal to melt regions of a microelectronic device buried under overlying materials, such as an interlayer dielectric (ILD). Melting temperature differentiation is employed to selectively melt a buried region. In embodiments a buried region is at least one of a gate electrode and a source/drain region. Laser anneal may be performed after contact formation with contact metal coupling energy into the buried layer for the anneal.
摘要:
A non-planar transistor including partially melted raised semiconductor source/drains disposed on opposite ends of a semiconductor fin with the gate stack disposed there between. The raised semiconductor source/drains comprise a super-activated dopant region above a melt depth and an activated dopant region below the melt depth. The super-activated dopant region has a higher activated dopant concentration than the activated dopant region and/or has an activated dopant concentration that is constant throughout the melt region. A fin is formed on a substrate and a semiconductor material or a semiconductor material stack is deposited on regions of the fin disposed on opposite sides of a channel region to form raised source/drains. A pulsed laser anneal is performed to melt only a portion of the deposited semiconductor material above a melt depth.
摘要:
Laser anneal to melt regions of a microelectronic device buried under overlying materials, such as an interlayer dielectric (ILD). Melting temperature differentiation is employed to selectively melt a buried region. In embodiments a buried region is at least one of a gate electrode and a source/drain region. Laser anneal may be performed after contact formation with contact metal coupling energy into the buried layer for the anneal.
摘要:
An annealing method and apparatus for semiconductor manufacturing is described. The method and apparatus allows an anneal that can span a thermal budget and be tailored to a specific process and its corresponding activation energy. In some cases, the annealing method spans a timeframe from about 1 millisecond to about 1 second. An example for this annealing method includes a sub-second anneal method where a reduction in the formation of nickel pipes is achieved during salicide processing. In some cases, the method and apparatus combine the rapid heating rate of a sub-second anneal with a thermally conductive substrate to provide quick cooling for a silicon wafer. Thus, the thermal budget of the sub-second anneal methods may span the range from conventional RTP anneals to flash annealing processes (including duration of the anneal, as well as peak temperature). Other embodiments are described.