Abstract:
A droplet dispensing system for forming and dispensing droplets of a liquid sample is provided. The droplet dispensing system is fabricated on the tip of a dispensing pin. The tip of the dispensing pin includes a droplet ejection nozzle, a filling channel, a chamber and an actuator for ejecting droplets on demand. The system further includes a holder for mounting the dispensing pin. The holder also contains a control circuit for activating the actuator.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
Abstract:
A fluid interface port in a separation device for separating a sample into different components is provided. The separation device includes an array of separation channels and the fluid interface port comprises an opening formed in the side wall of a separation channel sized and dimensioned to form a virtual wall when the separation channel is filled with a separation medium. The fluid interface port is utilized to introduce a liquid sample into the separation medium. The fluid interface ports formed in the array of separation channels are organized into one or more sample injectors. A cathode reservoir is multiplexed with one or more separation channels. To complete an electrical path, an anode reservoir which is common to some or all separation channels is also provided.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
Abstract:
An on-chip chemical compound dilution system for providing dilution of a chemical compound in a microfluidic application includes at least one sample well for providing a selected chemical compound to be diluted, a dilution well for providing a diluent for diluting the chemical compound, a network of channels for carrying the chemical compound and diluent, a first syringe pump for effecting dilution, a second syringe pump, a detector and a plurality of valves for selectively controlling the flow of liquid through the channels. The dilution system may be a multiple-stage dilution system for precisely mixing a plurality of chemical compounds in a diluent. The dilution system allows for accurate calibration to compensate for variations due to manufacturing, thereby providing precise dilution ratios. The dilution system further enables flushing to allow re-use of the system with another chemical compound.
Abstract:
A two-pin liquid sample dispensing system is provided. The two-pin dispensing system comprises a pair of separately movable pins for holding a droplet of liquid therebetween. Each pin includes a tip spaced predetermined distance from the other pin to define a sample acquisition region. The pins acquire and hold a droplet of the liquid sample in the sample acquisition region formed in the space between the tips and apply the droplet to a selected sample handing system. The distance between the tips is variable to accommodate different liquid samples having varying physical properties and to vary the volume of the acquired droplet.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.