摘要:
Strategic placement and patterning of electrodes, vias, and metal runners can significantly reduce strain in a power semiconductor die. By modifying the path defining electrodes, vias, and metal runners, as well as patterning the material layers thereof, strain can be better managed to increase reliability of a power semiconductor die.
摘要:
Semiconductor devices, and more particularly passivation structures for semiconductor devices are disclosed. A semiconductor device may include an active region, an edge termination region that is arranged along a perimeter of the active region, and a passivation structure that may form a die seal along the edge termination region. The passivation structure may include a number of passivation layers in an arrangement that improves mechanical strength and adhesion of the passivation structure along the edge termination region. An interface formed by at least one of the passivation layers may be provided with a pattern that serves to more evenly distribute forces related to thermal expansion and contraction during power cycling, thereby reducing cracking and delamination in the passivation structure. A patterned layer may be at least partially embedded in the passivation structure in an arrangement that forms the corresponding pattern in overlying portions of the passivation structure.
摘要:
Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
摘要:
A Schottky diode includes a drift region, a channel in an upper portion of the drift region, and first and second adjacent blocking junctions in the upper portion of the drift region that define the channel therebetween. The drift region and channel are doped with dopants having a first conductivity type, and the first and second blocking junctions doped with dopants having a second conductivity type that is opposite the first conductivity type. The blocking junctions extend at least one micron into the upper portion of the drift region and are spaced apart from each other by less than 3.0 microns.
摘要:
Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.
摘要:
A transistor device having reduced electrical field at the gate oxide interface is disclosed. In one embodiment, the transistor device comprises a gate, a source, and a drain, wherein the gate is at least partially in contact with a gate oxide. The transistor device has a P+ region within a JFET region of the transistor device in order to reduce an electrical field on the gate oxide.
摘要:
A semiconductor device includes a semiconductor layer structure that includes silicon carbide, a gate dielectric layer on the semiconductor layer structure, and a gate electrode on the gate dielectric layer opposite the semiconductor layer structure. In some embodiments, a periphery of a portion of the gate dielectric layer that underlies the gate electrode is thicker than a central portion of the gate dielectric layer, and a lower surface of the gate electrode has recessed outer edges such as rounded and/or beveled outer edges.
摘要:
Semiconductor devices include a semiconductor layer structure comprising a drift region that includes a wide band-gap semiconductor material. A shielding pattern is provided in an upper portion of the drift region in an active region of the device and a termination structure is provided in the upper portion of the drift region in a termination region of the device. A gate trench extends into an upper surface of the semiconductor layer structure. The semiconductor layer structure includes a semiconductor layer that extends above and at least partially covers the termination structure.
摘要:
Semiconductor devices include a plurality of gate fingers extending on a wide bandgap semiconductor layer structure. An inter-metal dielectric pattern is formed on the gate fingers, the inter-metal dielectric pattern including a plurality of dielectric fingers that cover the respective gate fingers. A top-side metallization is provided on the inter-metal dielectric pattern and on exposed portions of the upper surface of the wide bandgap semiconductor layer structure. The top-side metallization includes a first conductive diffusion barrier layer on the inter-metal dielectric pattern and on the exposed portions of the upper surface of the wide bandgap semiconductor layer structure, a conductive contact layer on an upper surface of the first conductive diffusion barrier layer, and a grain stop layer buried within the conductive contact layer.
摘要:
Power switching devices include a semiconductor layer structure that has an active region and an inactive region. The active region includes a plurality of unit cells and the inactive region includes a field insulating layer on the semiconductor layer structure and a gate bond pad on the field insulating layer opposite the semiconductor layer structure. A gate insulating pattern is provided on the semiconductor layer structure between the active region and the field insulating layer, and at least one source/drain contact is provided on the semiconductor layer structure between the gate insulating pattern and the field insulating layer.