摘要:
Semiconductor devices include a silicon carbide drift region having an upper portion and a lower portion. A first contact is on the upper portion of the drift region and a second contact is on the lower portion of the drift region. The drift region includes a superjunction structure that includes a p-n junction that is formed at an angle of between 10° and 30° from a plane that is normal to a top surface of the drift region. The p-n junction extends within +/−1.5° of a crystallographic axis of the silicon carbide material forming the drift region.
摘要:
A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SiC) MOSFET device.
摘要:
A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SIC) MOSFET device.
摘要:
The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
摘要:
The present disclosure relates to a Schottky diode having a drift layer and a Schottky layer. The drift layer is predominantly doped with a doping material of a first conductivity type and has a first surface associated with an active region. The Schottky layer is provided over the active region of the first surface to form a Schottky junction. A plurality of junction barrier elements are formed in the drift layer below the Schottky junction, and a plurality of central implants are also formed in the drift layer below the Schottky junction. In certain embodiments, at least one central implant is provided between each adjacent pair of junction barrier elements.
摘要:
A transistor device having reduced electrical field at the gate oxide interface is disclosed. In one embodiment, the transistor device comprises a gate, a source, and a drain, wherein the gate is at least partially in contact with a gate oxide. The transistor device has a P+ region within a JFET region of the transistor device in order to reduce an electrical field on the gate oxide.
摘要:
The present disclosure relates to a Schottky diode having a drift layer and a Schottky layer. The drift layer is predominantly doped with a doping material of a first conductivity type and has a first surface associated with an active region. The Schottky layer is provided over the active region of the first surface to form a Schottky junction. A plurality of junction barrier elements are formed in the drift layer below the Schottky junction, and a plurality of central implants are also formed in the drift layer below the Schottky junction. In certain embodiments, at least one central implant is provided between each adjacent pair of junction barrier elements.
摘要:
A transistor device having reduced electrical field at the gate oxide interface is disclosed. In one embodiment, the transistor device comprises a gate, a source, and a drain, wherein the gate is at least partially in contact with a gate oxide. The transistor device has a P+ region within a JFET region of the transistor device in order to reduce an electrical field on the gate oxide.
摘要:
A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SIC) MOSFET device.
摘要:
The present disclosure relates to a Schottky diode having a drift layer and a Schottky layer. The drift layer is predominantly doped with a doping material of a first conductivity type and has a first surface associated with an active region. The Schottky layer is provided over the active region of the first surface to form a Schottky junction. A plurality of junction barrier elements are formed in the drift layer below the Schottky junction, and a plurality of central implants are also formed in the drift layer below the Schottky junction. In certain embodiments, at least one central implant is provided between each adjacent pair of junction barrier elements.