Abstract:
Techniques are disclosed for enabling a wind-sensing optical scope to communicate with external components to provide for a ballistic solution. Techniques may further incorporate cost saving features such as the utilization of a photo diode and/or other features. The wind-sensing optical scope may include various sensors to collect data for the ballistic solution, and/or data from external sensors may be used. Techniques may further incorporate range finding in the wind-sensing optical scope, depending on desired functionality.
Abstract:
Techniques are disclosed for providing the weapon-mounted optical scope that provides for wind sensing and the display a ballistic solution without the need for a separate device. Embodiments may include various additional sensors housed within the weapon-mounted optical scope to provide data for the ballistic solution calculation. Embodiments may further include a display at the input aperture rather than internally at the first-focal-plane, enabling for simpler, more cost effective embodiments. Additionally or alternatively, embodiments may include a laser, separate from the wind sensing laser, to perform range-finding functions, and/or an enhanced-image assembly.
Abstract:
Techniques are disclosed for laser-based target locating for measuring and displaying absolute coordinates (e.g., Global Positioning System (GPS) coordinates) for a target. Techniques include determining absolute coordinates of a laser-based target locator, and using range and other measurements (e.g., compass heading, tilt, and/or the like) to determine the absolute coordinates of a target. The laser-based target locator can then display the absolute coordinates to a user. Sensors providing the other measurements may be calibrated by first determining the absolute coordinates of an optical tag, which may be optically communicated to the laser-based target locator.
Abstract:
Embodiments disclosed herein address these and other issues by providing for a long range ballistic laser rangefinder system that helps overcome these and other obstacles. In particular, embodiments of a laser rangefinder system utilize a laser transmitter assembly with a fiber laser for generating a plurality of laser pulses that are reflected off of a target and received at a light receiver assembly that includes a light detector for detecting the reflected laser pulses. The plurality of reflected laser pulses are then used to determine an accurate distance from the laser rangefinder system to the target. This can include, for example, taking an average of the distances calculated using each of the plurality of reflected laser pulses.
Abstract:
Techniques disclosed herein provide for substantially uniform steering of multiple laser beams of a laser rangefinder having different wavelengths, such as a rangefinder laser beam and a visible laser beam. This can allow a user of the laser rangefinder to use the visible laser beam to bore sight the range-finding laser beam to a weapon onto which the laser rangefinder is mounted. The uniform steering of the multiple laser beams can be done through the utilization of a Risley prism assembly with one or more Risley prisms having a center portion through which one laser beam travels and at least one annulus through which a second laser beam travels.
Abstract:
Embodiments of the invention(s) described herein enable the display of information (e.g., information related to aiming and/or target selection and/or other information) through the use of a rifle scope display adapter (RDA) that can be coupled to and/or placed in proximity to an existing rifle scope. This information, which is viewable through the eyepiece of the rifle scope, can come from a spotter and/or other information source. The RDA may utilize a polarized transmissive-reflective optical element to enable light generated by the RDA to be reflected into the objective of the rifle scope, as well as light from a scene viewable by the rifle scope to be transmitted through the polarized transmissive-reflective optical element to the objective.
Abstract:
Techniques are disclosed for enabling a wind-sensing optical scope to communicate with external components to provide for a ballistic solution. Techniques may further incorporate cost saving features such as the utilization of a photo diode and/or other features. The wind-sensing optical scope may include various sensors to collect data for the ballistic solution, and/or data from external sensors may be used. Techniques may further incorporate range finding in the wind-sensing optical scope, depending on desired functionality.
Abstract:
This disclosure describes a compact and lightweight rifle scope display adapter configured to be affixed in front of the objective lens of a rifle scope. The display adapter includes a receptacle that enables the adapter to be electrically connected to a ballistic computer, rangefinder or other targeting mechanism. The display adapter is configured to receive aimpoint information and project illuminated symbology that is brought into focus by the rifle scope optics in such a way that the symbology appears to overlay an image of a scene on which the rifle scope is focused. The display adapter includes a casing that houses processing circuitry, a light emitting diode, polarizer, polarized beam splitter, liquid crystal on silicon imaging element and reflective element. The display adapter also includes a light bar, spherical mirror, quarter-wave plate and an additional polarized beam splitter contained within the light bar.
Abstract:
Embodiments of the invention(s) described herein enable the display of information (e.g., information related to aiming and/or target selection and/or other information) through the use of a rifle scope display adapter (RDA) that can be coupled to and/or placed in proximity to an existing rifle scope. This information, which is viewable through the eyepiece of the rifle scope, can come from a spotter and/or other information source. The RDA may utilize a polarized transmissive-reflective optical element to enable light generated by the RDA to be reflected into the objective of the rifle scope, as well as light from a scene viewable by the rifle scope to be transmitted through the polarized transmissive-reflective optical element to the objective.
Abstract:
Embodiments of the present invention are directed toward a low-power, high quality compact laser source. Embodiments include an optical combiner combining the outputs of a pump laser and a Fabry-Perot seed laser into a fiber amplifier. The fiber amplifier can comprise, for example, erbium-doped fiber. Embodiments can include pulsed and continuous wave lasers, depending on desired functionality.