Abstract:
An electromagnetic component includes a coil portion with a multi-layer stack structure, a molded body encapsulating the coil portion, and two electrodes respectively coupled to two terminals of the coil portion. The coil portion is fabricated using plating, laminating and/or pressing manufacturing techniques.
Abstract:
An electromagnetic component includes a coil portion with a multi-layer stack structure, a molded body encapsulating the coil portion, and two electrodes respectively coupled to two terminals of the coil portion. The coil portion is fabricated using plating, laminating and/or pressing manufacturing techniques.
Abstract:
A method to form an electrical component, the method comprising: providing a first lead and a second lead; forming a first conductive pillar and a second conductive pillar on a first portion of the top surface of the first lead and a first portion of the top surface of the second lead, respectively, wherein a second portion of the top surface of the first lead, a second portion of the top surface of the second lead, the first conductive pillar, and the second conductive pillar form a 3D space, wherein at least one device is disposed in said 3D space and electrically connected to the at least one device to the first conductive pillar and the second conductive pillar.
Abstract:
An electromagnetic component including a multi-layer, spiral coil structure embedded in a molded body is disclosed. Each layer of the coil structure makes approximately one and a quarter turns of a winding. Each layer of the coil structure has a loose middle segment, two slim end segments overlapping each other with a spacing therebetween, and tapered neck segments respectively connecting the loose middle segment with the two slim end segments.
Abstract:
A protective device including a substrate, a conductive section and a first auxiliary medium is provided. The conductive section is supported by the substrate, wherein the conductive section comprises a metal element electrically connected between first and second electrodes. The metal element serves as a sacrificial structure having a melting point lower than that of the first and second electrodes. The first auxiliary medium is disposed between the metal element and the substrate, wherein the first auxiliary medium has a melting point lower than that of the metal element. The first auxiliary medium facilitates breaking of the metal element upon melting.
Abstract:
A method to form an electrical component, the method comprising: providing a first lead and a second lead; forming a first conductive pillar and a second conductive pillar on a first portion of the top surface of the first lead and a first portion of the top surface of the second lead, respectively, wherein a second portion of the top surface of the first lead, a second portion of the top surface of the second lead, the first conductive pillar, and the second conductive pillar form a 3D space, wherein at least one device is disposed in said 3D space and electrically connected to the at least one device to the first conductive pillar and the second conductive pillar.
Abstract:
A protective device includes a substrate, an electrode layer, a metal structure, an outer cover and an arc extinguishing structure. The electrode layer is disposed on the substrate. The electrode layer includes at least one gap. The metal structure is disposed on the electrode layer and located above the gap, and the metal structure has a melting temperature lower than a melting temperature of the electrode layer. The outer cover is disposed on the substrate and covers the metal structure and a portion of the electrode layer. The arc extinguishing structure is disposed between the outer cover and the substrate. A protective module is further provided.
Abstract:
A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Abstract:
A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Abstract:
The present invention discloses a leadframe in which two conductive pillars with a high aspect ratio and the corresponding two leads of the leadframe form a 3D space for accommodating at least one device. A first lead and a second lead are spaced apart from each other. A first conductive pillar is formed on the first lead by disposing a first via on the first lead, wherein at least one first conductive material is filled inside the first via to form the first conductive pillar. A second conductive pillar is formed on the second lead by disposing a second via on the second lead, wherein at least one second conductive material is filled inside the second via to form the second conductive pillar. The first lead, the second lead, the first conductive pillar, and the second conductive pillar form a 3D space for accommodating at least one device, wherein the at least one device is electrically connected to the first conductive pillar and the second conductive pillar.