Abstract:
An electronic device includes a first molded product integrated with an electronic component, and a second molded product secondarily molded outside of the first molded product. The first molded product includes a thermosetting resin, and a first additive contained in the thermosetting resin, and the second molded product includes a thermoplastic resin, and a second additive contained in the thermoplastic resin and having a reactive group that chemically bonds with the first additive. At an interface between the first molded product and the second molded product, the first additive and the second additive are joined to each other by one or more joint actions selected from covalent bonding, ionic bonding, hydrogen bonding, intermolecular forces, dispersion force, and diffusion. As a result, the adhesion between both the molded products can be firmly secured through the molding technique such as the transfer molding method or the compression molding method.
Abstract:
A resin additive for a polyphenylene sulfide includes a diamine compound expressed by a following general chemical formula (1), in which A is an oxygen atom or a sulfur atom, X is a hydrogen atom, an alkyl group with a carbon number of six or less, or an aryl group, and n is a natural number of 1 to 10. A polyphenylene sulfide resin composition includes the resin additive and a polyphenylene sulfide resin. An electronic device includes a molded product of the polyphenylene sulfide resin composition.
Abstract:
A curable polyurethane type resin composition which is applicable for a sealing material for an electrical device used in a vehicle, enhances a hydrolysis resistance of a cured substance and can suppress a decrease in physical properties in high temperature and high moisture environments. The curable polyurethane type resin composition contains castor oil-type polyol, polyisocyanate, and epoxidized acrylic polymer. The electrical device has electrical components covered with a sealing material consisting of a cured substance of the curable polyurethane-type resin composition.
Abstract:
A resin additive for a polyphenylene sulfide includes a diamine compound expressed by a following general chemical formula (1), in which A is an oxygen atom or a sulfur atom, X is a hydrogen atom, an alkyl group with a carbon number of six or less, or an aryl group, and n is a natural number of 1 to 10. A polyphenylene sulfide resin composition includes the resin additive and a polyphenylene sulfide resin. An electronic device includes a molded product of the polyphenylene sulfide resin composition.
Abstract:
An epoxy resin composition includes: epoxy resin as a main component; and diamine having phenylene oxide skeleton indicated by an equation of: A code of “X” is a hydrogen or a methyl group, and a suffix of “n” is an integer in a range between 1 and 10. In the above composition, the gelation time is short, compared with a case where the epoxy resin composition with using phenylene sulfide skeletal diamine as hardening agent of an epoxy resin.
Abstract:
A hardening resin composition includes a base resin and a hardening agent. The base resin contains a maleimide compound having two or more maleimide groups in one molecule, and the hardening agent contains a diamine compound expressed by a general chemical formula (1), in which A is an oxygen atom or a sulfur atom, X is a hydrogen atom, an alkyl group with a carbon number of six or less, or an aryl group, and n is a natural number of 1 to 10.
Abstract:
A curable resin composition comprises a (meth)acrylic polyol, a hydrogenated polyolefin-based polyol, and a polyisocyanate. The (meth)acrylic polyol includes a polymer having a hydroxyl value of 5 mg KOH/g or more and 150 mg KOH/g or less, a glass transition temperature of −70° C. or more and −40° C. or less, and a number average molecular weight of 500 or more and 20000 or less, and which is liquid at 25° C. The hydrogenated polyolefin-based polyol has an iodine value of 15 or less. An electrical component (1) comprises a sealing member (2) including a cured product of the curable resin composition.
Abstract:
An electronic device includes a first molded product integrated with an electronic component, and a second molded product secondarily molded outside of the first molded product. The first molded product includes a thermosetting resin, and a first additive contained in the thermosetting resin, and the second molded product includes a thermoplastic resin, and a second additive contained in the thermoplastic resin and having a reactive group that chemically bonds with the first additive. At an interface between the first molded product and the second molded product, the first additive and the second additive are joined to each other by one or more joint actions selected from covalent bonding, ionic bonding, hydrogen bonding, intermolecular forces, dispersion force, and diffusion. As a result, the adhesion between both the molded products can be firmly secured through the molding technique such as the transfer molding method or the compression molding method.
Abstract:
A hardening resin composition includes a base resin and a hardening agent. The base resin contains a maleimide compound having two or more maleimide groups in one molecule, and the hardening agent contains a diamine compound expressed by a general chemical formula (1), in which A is an oxygen atom or a sulfur atom, X is a hydrogen atom, an alkyl group with a carbon number of six or less, or an aryl group, and n is a natural number of 1 to 10.