Abstract:
A semiconductor device includes a conductive substrate, a channel forming layer, a first electrode, and a second electrode. The channel forming layer is located above the conductive substrate and includes at least one hetero-junction structure. The hetero-junction structure includes a first GaN-type semiconductor layer providing a drift region and a second GaN-type semiconductor layer having a bandgap energy greater than the first GaN-type semiconductor layer. A total fixed charge quantity of charges in the first GaN-type layer and the second GaN-type layer is from 0.5×1013 to 1.5×1013 cm−2. The charges in the first GaN-type layer and the second GaN-type layer include charges generated by the polarization in the first GaN-type layer. Accordingly, the semiconductor device capable of improving a break-down voltage and decreasing an on-resistance is obtained.
Abstract:
A nitride semiconductor device includes a horizontal switching device that includes a substrate, a channel forming layer, a source region, a drain region and a gate region. The source region and the drain region are arranged apart from each other in one direction along a plane of the substrate. The gate region is formed of a p-type semiconductor layer and is arranged between the source region and the drain region. The gate region is divided into multiple parts in a perpendicular direction along the plane of the substrate, the perpendicular direction being perpendicular to an arrangement direction in which the source region and the drain region are arranged. Accordingly, on-resistance is decreased while securing high breakdown voltage.
Abstract:
A semiconductor device includes a GaN device provided with: a substrate made of a semi-insulating material or a semiconductor; a channel-forming layer including a GaN layer arranged on the substrate; a gate structure in which a gate-insulating film in contact with the GaN layer is arranged on the channel-forming layer, the gate structure having a gate electrode arranged across the gate-insulating film; and a source electrode and a drain electrode that are arranged on the channel-forming layer and on opposite sides interposing the gate structure. The donor element concentration at the interface between the gate-insulating film and the GaN layer and at the lattice position on the GaN layer side with respect to the interface is set to be less than or equal to 5.0×1017 cm−3.
Abstract:
In a semiconductor device, an AlGaN layer includes a first AlGaN layer and a second AlGaN layer. The second AlGaN layer is positioned between a gate structure portion and a drain electrode and is divided into multiple parts in an arrangement direction in which the gate structure portion and the drain electrode are arranged. A second Al mixed crystal ratio of the second AlGaN layer is less than a first Al mixed crystal ratio of the first AlGaN layer. Accordingly, the semiconductor device is a normally-off-type device and is capable of restricting a decrease of a breakdown voltage and an increase of an on-resistance.
Abstract:
In a semiconductor device, a gate insulating film is provided with a multi-layer structure including a first insulating film and a second insulating film. The first insulating film is formed of an insulating film containing an element having an oxygen binding force larger than that of an element contained in the second insulating film, and the total charge amount is increased. Specifically, by performing oxygen anneal, it is possible to perform the step of supplying oxygen into an aluminum oxide film and increase the total charge amount. This allows a negative fixed charge density in the gate insulating film in the vicinity of an interface with a GaN layer to be set to a value of not less than 2.5×1011 cm−2 and allows a normally-off element to be reliably provided.
Abstract:
A semiconductor device has a lateral switching device that includes a channel forming layer, a gate structure portion, a source electrode, a drain electrode, a third semiconductor layer, a fourth semiconductor layer, and a junction gate electrode. The gate structure portion has a gate insulating film provided in a recess portion of the channel forming layer and a MOS gate electrode functioning as a gate electrode of a MOS structure provided on the gate insulating film. The source electrode and the junction gate electrode are coupled through an electrode layer provided on an interlayer insulating film covering the MOS gate electrode. An end of the third semiconductor layer facing the drain electrode protrudes toward the drain electrode from an end of the fourth semiconductor layer facing the drain electrode by a distance in a range of 1 μm to 5 μm both inclusive.
Abstract:
A semiconductor device includes a switching device having: a substrate configured by a semi-insulating material or a semiconductor; a channel forming layer on the substrate that is configured by a compound semiconductor mainly having a group III nitride; a gate structure configured by a gate electrode on the channel forming layer with a gate insulating film interposed therebetween; and a source electrode and a drain electrode on the channel forming layer at both sides of the gate structure respectively, a collapse inhibiting layer on the channel forming layer in an element region of the channel forming layer where the switching device is arranged that is configured by an insulating material; and a leakage inhibiting layer on the channel forming layer in an element isolation region of the channel forming layer surrounding the element region that is configured by an insulating material different from that of the collapse inhibiting layer.
Abstract:
A manufacturing method of a semiconductor device including arranging a compound semiconductor above a stage of a chamber, supplying an etching gas into the chamber, and generating a plasma in the chamber is provided. The compound semiconductor includes a group-III element nitride as a main component. A surface of the compound semiconductor is processed by a dry etching. Light is irradiated into the chamber during the generating of the plasma. A dry etching apparatus including a chamber including a stage, on which a compound semiconductor is mounted, and a light source irradiating light into the chamber is provided. The chamber is supplied with an etching gas. A plasma is generated in the chamber. A surface of the compound semiconductor is an object of a dry etching.