摘要:
Methods and apparatus for electron beam treatment of a substrate are provided. An electron beam apparatus that includes a vacuum chamber, at least one thermocouple assembly in communication with the vacuum chamber; and a heating device in communication with the vacuum chamber and combinations thereof are provided. In one embodiment, the vacuum chamber comprises a cathode, an anode, and a substrate support. In another embodiment, the vacuum chamber comprises a grid located between the anode and the substrate support. In one embodiment the heating device comprises a first parallel light array and a second light array positioned such that the first parallel light array and the second light array intersect. In one embodiment the thermocouple assembly comprises a temperature sensor made of aluminum nitride.
摘要:
Methods and apparatus for electron beam treatment of a substrate are provided. An electron beam apparatus that includes a vacuum chamber, at least one thermocouple assembly in communication with the vacuum chamber, a heating device in communication with the vacuum chamber, and combinations thereof are provided. In one embodiment, the vacuum chamber comprises an electron source wherein the electron source comprises a cathode connected to a high voltage source, an anode connected to a low voltage source, and a substrate support. In another embodiment, the vacuum chamber comprises a grid located between the anode and the substrate support. In one embodiment the heating device comprises a first parallel light array and a second light array positioned such that the first parallel light array and the second light array intersect. In one embodiment the thermocouple assembly comprises a temperature sensor made of aluminum nitride.
摘要:
Methods and apparatus for electron beam treatment of a substrate are provided. An electron beam apparatus that includes a vacuum chamber, at least one thermocouple assembly in communication with the vacuum chamber, a heating device in communication with the vacuum chamber, and combinations thereof are provided. In one embodiment, the vacuum chamber comprises an electron source wherein the electron source comprises a cathode connected to a high voltage source, an anode connected to a low voltage source, and a substrate support. In another embodiment, the vacuum chamber comprises a grid located between the anode and the substrate support. In one embodiment the heating device comprises a first parallel light array and a second light array positioned such that the first parallel light array and the second light array intersect. In one embodiment the thermocouple assembly comprises a temperature sensor made of aluminum nitride.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
The present invention comprises an apparatus and method for etching at a substrate edge region. In one embodiment, the apparatus comprises a chamber having a process volume, a substrate support arranged inside the process volume and having a substrate support surface, a plasma generator coupled to the chamber and configured to supply an etching agent in a plasma phase to a peripheral region of the substrate support surface, and a gas delivery assembly coupled to a gas source for generating a radial gas flow over the substrate support surface from an approximately central region of the substrate support surface toward the peripheral region of the substrate support surface.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
摘要:
Exemplary embodiments relate to techniques for supplying increased power to an augmentation device without increasing battery size. For example, the load may be a motor that provides augmentation power to a joint of a prosthetic ankle, and which is generally powered by a battery. A reconfigurable electrical circuit may connect a supercapacitor in series with the battery to boost the power from the battery at times when a pulse of increased power is demanded. For instance, states of one or more switches of the electrical circuit may be changed in order to briefly disconnect the motor from the circuit just prior to a powered plantarflexion phase of a gait cycle of the ankle, and then to reconnect the motor to a reconfigured circuit to provide a power boost. The circuit may also be reconfigured to allow the battery to recharge the supercapacitor during periods of nominal power demand.
摘要:
Several embodiments of the present invention comprise a storage platform that provides a synchronization service that (i) allows multiple instances of the storage platform (each with its own data store) to synchronize parts of their content according to a flexible set of rules, and (ii) provides an infrastructure for third parties to synchronize the data store of the storage platform of the present invention with with other data sources that implement proprietary protocols. In various embodiments, storage-platform-to-storage-platform synchronization occurs among a group of participating “replicas.” For example, it may be desirable to provide synchronization between the data store of the storage platform with another remote data store under the control of another instance of the storage platform, perhaps running on a different computer system.