摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a conformal layer of a water soluble nanopowder on a wafer, and then scribing the wafer.
摘要:
The embodiments of the present invention include coating a semiconductor wafer with a polymer layer and attaching the polymer layer to a support substrate with a tape. The tape has at least two adhesive sides, and at least one radiation sensitive side. The radiation sensitive side facilitates release of the tape.
摘要:
Amine-based no-flow underfill materials and a method to produce flip-chip devices electrically bonded to a substrate are described. The no-flow underfill material includes an amine-based curing agent and a fluxing agent, which activates at a fluxing temperature and is neutral at the temperatures lower than the fluxing temperature. The fluxing agent of the no-flow underfill material heated to the activation temperature generates a reactive acid in-situ during chip attachment process to facilitate joint formation. The no-flow underfill material is formed on the substrate. A chip is placed on the no-flow underfill material formed on the substrate. A temperature is increased to activate the fluxing agent. The temperature is further increased to form conductive joints between the chip and the substrate. Further, the no-flow underfill material is cured. The conductive joints between the chip and the substrate may be lead-free.
摘要:
A nano-sized solder suspension flows by selective wetting onto a bond pad and away from a bond-pad resist area. A microelectronic package is also disclosed that uses the nano-sized solder suspension. A method of assembling a microelectronic package is also disclosed. A computing system is also disclosed that includes a bump that was reflowed from the nano-sized solder suspension.
摘要:
A nano-sized solder suspension flows by selective wetting onto a bond pad and away from a bond-pad resist area. A microelectronic package is also disclosed that uses the nano-sized solder suspension. A method of assembling a microelectronic package is also disclosed. A computing system is also disclosed that includes a bump that was reflowed from the nano-sized solder suspension.
摘要:
A nano-sized solder suspension flows by selective wetting onto a bond pad and away from a bond-pad resist area. A microelectronic package is also disclosed that uses the nano-sized solder suspension. A method of assembling a microelectronic package is also disclosed. A computing system is also disclosed that includes a bump that was reflowed from the nano-sized solder suspension.
摘要:
The present invention relates to a semiconductor package containing a package substrate, integrated heat spreader, and semiconductor die. An underfill material is embedded in the semiconductor package serving both as underfill and sealant.
摘要:
An underfill material, such as a no flow underfill material, containing an anhydride adduct of a rosin compound is disclosed. In one aspect, the anhydride adduct of a rosin compound contains an organic rosin acid moiety and a substitute moiety for a hydroxyl group of a carboxylic acid attached at an acyl group of the organic rosin acid moiety. In another aspect, the anhydride adduct of the rosin compound contains a plurality of linked organic rosin acid moieties. Methods of using the underfill materials and packages formed by curing the underfill materials are also disclosed.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a conformal layer of a water soluble nanopowder on a wafer, and then scribing the wafer.
摘要:
Microelectronic packages formed by using novel fluxing agents are disclosed. In one aspect, a microelectronic package may include a microelectronic device, a substrate, and an interconnect structure including a solder material coupling the microelectronic device with the substrate. Underfill material may be included around the interconnect structure between the microelectronic device and the substrate. The underfill material may include an organic rosin acid moiety derived from an anhydride adduct of a rosin compound that was used as a fluxing agent. Methods of making such microelectronic packages using anhydride adducts of rosin compounds are also disclosed.