摘要:
An interconnect structure is provided that includes at least one patterned and cured photo-patternable low k material located on a surface of a patterned and cured oxygen-doped SiC antireflective coating (ARC). A conductively filled region is located within the at least one patterned and cured photo-patternable low k material and the patterned and cured oxygen-doped SiC ARC. The oxygen-doped SiC ARC, which is a thin layer (i.e., less than 400 angstroms), does not produce standing waves that may degrade the diffusion barrier and the electrically conductive feature that are embedded within the patterned and cured photo-patternable low k dielectric material and, as such, structural integrity is maintained. Furthermore, since a thin oxygen-doped SiC ARC is employed, the plasma etch process time used to open the material stack of the ARC/dielectric cap can be reduced, thus reducing potential plasma damage to the patterned and cured photo-patternable low k material. Also, the oxygen-doped SiC ARC can withstand current BEOL processing conditions.
摘要:
An interconnect structure is provided that includes at least one patterned and cured photo-patternable low k material located on a surface of a patterned and cured oxygen-doped SiC antireflective coating (ARC). A conductively filled region is located within the at least one patterned and cured photo-patternable low k material and the patterned and cured oxygen-doped SiC ARC. The oxygen-doped SiC ARC, which is a thin layer (i.e., less than 400 angstroms), does not produce standing waves that may degrade the diffusion barrier and the electrically conductive feature that are embedded within the patterned and cured photo-patternable low k dielectric material and, as such, structural integrity is maintained. Furthermore, since a thin oxygen-doped SiC ARC is employed, the plasma etch process time used to open the material stack of the ARC/dielectric cap can be reduced, thus reducing potential plasma damage to the patterned and cured photo-patternable low k material. Also, the oxygen-doped SiC ARC can withstand current BEOL processing conditions.
摘要:
An adhesion promoter layer is formed on a surface of a substrate as an adhesion promoter layer, on which a photoresist is applied. The photoresist is lithographically exposed. Soluble portions of the lithographically exposed photoresist are dissolved in a developer solution including tetraalkylammonium hydroxide. Tetraalkylammonium hydroxide salts are formed in crystalline forms on surfaces of the substrate. A water-soluble acidic polymer layer is applied over the surfaces of the substrate to dissolve the tetraalkylammonium hydroxide salts. The water-soluble acidic polymer layer is rinsed off by water, thereby providing clean surfaces that do not include the tetraalkylammonium hydroxide salts on the substrate. Subsequent processes can be performed on the substrate, which is covered by remaining portions of the developed photoresist and has clean surfaces in regions not covered by the photoresist.
摘要:
An adhesion promoter layer is formed on a surface of a substrate as an adhesion promoter layer, on which a photoresist is applied. The photoresist is lithographically exposed. Soluble portions of the lithographically exposed photoresist are dissolved in a developer solution including tetraalkylammonium hydroxide. Tetraalkylammonium hydroxide salts are formed in crystalline forms on surfaces of the substrate. A water-soluble acidic polymer layer is applied over the surfaces of the substrate to dissolve the tetraalkylammonium hydroxide salts. The water-soluble acidic polymer layer is rinsed off by water, thereby providing clean surfaces that do not include the tetraalkylammonium hydroxide salts on the substrate. Subsequent processes can be performed on the substrate, which is covered by remaining portions of the developed photoresist and has clean surfaces in regions not covered by the photoresist.
摘要:
A negative resist composition, comprising: (a) silicon-containing polymer with pendant fused moieties selected from the group consisting of fused aliphatic moieties, homocyclic fused aromatic moieties, and heterocyclic fused aromatic and sites for reaction with a crosslinking agent, (b) an acid-sensitive crosslinking agent, and (c) a radiation-sensitive acid generator is provided. The resist composition is used to form a patterned material layer in a substrate.
摘要:
A negative resist composition, comprising: (a) silicon-containing polymer with pendant fused moieties selected from the group consisting of fused aliphatic moieties, homocyclic fused aromatic moieties, and heterocyclic fused aromatic and sites for reaction with a crosslinking agent, (b) an acid-sensitive crosslinking agent, and (c) a radiation-sensitive acid generator is provided. The resist composition is used to form a patterned material layer in a substrate.
摘要:
Compositions suitable for forming planarizing underlayers for multilayer lithographic processes are characterized by the presence of (A) a polymer containing: (i) cyclic ether moieties, (ii) saturated polycyclic moieties, and (iii) aromatic moieties for compositions not requiring a separate crosslinker, or (B) a polymer containing: (i) saturated polycyclic moieties, and (ii) aromatic moieties for compositions requiring a separate crosslinker. The compositions provide outstanding optical, mechanical and etch selectivity properties. The compositions are especially useful in lithographic processes using radiation less than 200 nm in wavelength to configure underlying material layers.
摘要:
Compositions comprising a polymer having silicon, germanium and/or tin; and a protecting group grafted onto a polymeric backbone are useful as resists and are sensitive to imaging irradiation while exhibiting enhanced resistance to reactive ion etching.
摘要:
The reactive ion etching resistance of radiation sensitive resist composition is enhanced by adding at least one organometallic compound to a radiation sensitive polymer. The resist composition can be patterned and used as mask for patterning an underlying layer.
摘要:
Improved resolution of lithographic patterns can be obtained using a double exposure process where a resist layer is subjected to a patternwise first exposure followed by a blanket second exposure. The resist composition preferably contains a chemically amplified resist which undergoes significant shrinkage on exposure to radiation, a chemically amplified resist which contains a photo-bleachable component, or a chemically amplified resist which contains a chemical-bleachable component.