摘要:
A highspeed, intelligent, distributed control memory system is comprised of an array of modular, cascadable, integrated circuit devices, hereinafter referred to as "memory elements." Each memory element is further comprised of storage means, programmable on board processing ("distributed control") means and means for interfacing with both the host system and the other memory elements in the array utilizing a single shared bus. Each memory element of the array is capable of transferring (reading or writing) data between adjacent memory elements once per clock cycle. In addition, each memory element is capable of broadcasting data to all memory elements of the array once per clock cycle. This ability to asynchronously transfer data between the memory elements at the clock rate, using the distributed control, facilitates unburdening host system hardware and software from tasks more efficiently performed by the distributed control. As a result, the memory itself can, for example, perform such tasks as sorting and searching, even across memory element boundaries, in a manner which conserves, is faster and more efficient then using, host system resources.
摘要:
There is disclosed a self-regulating clock generator for providing an output clock signal to clock a CMOS microprocessor. The output clock signal has first and second phases of sufficient length to accommodate microprocessor speed paths and is provided in response to an input clock signal having a frequency and a duty cycle within a wide range of frequencies and duty cycles. The clock generator includes a latch arranged to be set and reset by the input clock signal and having an output for providing the output clock signal. A delay circuit is coupled to the latch output and enables the setting and resetting of the latch to establish the phase lengths. Also disclosed is a second clock generator which includes a pair of latches and a pair of delay circuits for providing an output clock signal having first and second phases of different lengths.
摘要:
An apparatus having a core processor and a memory system is disclosed. The core processor includes at least one data port. The memory system is connected in such a way as to provide substantially simultaneous data accesses through the data port. The memory system can be made user configurable to provide appropriate memory model.
摘要:
A microprocessor is configured to execute a prefetch instruction specifying a cache line to be transferred into the microprocessor, as well as an access mode for the cache line. The microprocessor includes caches optimized for the access modes. In one embodiment, the microprocessor includes functional units configured to operate upon various data type. Each different type of functional unit may be connected to different caches which are optimized for the various access modes. The prefetch instruction may include a functional unit specification in addition to the access mode. In this manner, data of a particular type may be prefetched into a cache local to a particular functional unit.
摘要:
An apparatus for accelerating move operations includes a lookahead unit which detects move instructions prior to the execution of the move instructions (e.g. upon selection of the move operations for dispatch within a processor). Upon detecting a move instruction, the lookahead unit signals a register rename unit, which reassigns the rename register associated with the source register to the destination register. In one particular embodiment, the lookahead unit attempts to accelerate moves from a base pointer register to a stack pointer register (and vice versa). An embodiment of the lookahead unit generates lookahead values for the stack pointer register by maintaining cumulative effects of the increments and decrements of previously dispatched instructions. The cumulative effects of the increments and decrements prior to a particular instruction may be added to a previously generated value of the stack pointer register to generate a lookahead value for that particular instruction. For such an embodiment, reassigning the rename register as described above may thereby provide a valid value for the stack pointer register, and hence may allow for the generation of lookahead stack pointer values for instructions subsequent to the move instruction to proceed prior to execution of the move instruction. The present embodiment of the register rename unit may also assign the destination rename register selected for the move instruction to the source register of the move instruction (i.e. the rename tags for the source and destination are “swapped”).
摘要:
A microprocessor conforming to the X86 architecture is disclosed which includes a linearly addressable cache, thus allowing the cache to be quickly accessed by an external bus while allowing fast translation to a logical address for operation with functional units of microprocessor. Also disclosed is a microprocessor which includes linear tag array and a physical tag array corresponding to the linear tag array, thus allowing the contents of a microprocessor cache to be advantageously monitored from an external bus without slowing the main instruction and data access processing paths.
摘要:
A processor employs an instruction queue and dependency vectors therein which allow a flexible dependency recording structure. The dependency vector includes a dependency indication for each instruction queue entry, which may provide a universal mechanism for scheduling instruction operations. An arbitrary number of dependencies may be recorded for a given instruction operation, up to a dependency upon each other instruction operation. Since the dependency vector is configured to record an arbitrary number of dependencies, a given instruction operation can be ordered with respect to any other instruction operation. Accordingly, any architectural or microarchitectural restrictions upon concurrent execution or upon order of particular instruction operations in execution may be enforced. The instruction queues evaluate the dependency vectors and request scheduling for each instruction operation for which the recorded dependencies have been satisfied.
摘要:
A computer system includes a processor having a cache which includes multiple ports, although a storage array included within the cache may employ fewer physical ports than the cache supports. The cache is pipelined and operates at a clock frequency higher than that employed by the remainder of a microprocessor including the cache. In one embodiment, the cache preferably operates at a clock frequency which is at least a multiple of the clock frequency at which the remainder of the microprocessor operates. The multiple is equal to the number of ports provided on the cache (or the ratio of the number of ports provided on the cache to the number of ports provided internally, if more than one port is supported internally). Accordingly, the accesses provided on each port of the cache during a clock cycle of the microprocessor clock can be sequenced into the cache pipeline prior to commencement of the subsequent clock cycle. In one particular embodiment, the load/store unit of the microprocessor is configured to select only load memory operations or only store memory operations for concurrent presentation to the data cache. Accordingly, the data cache may be performing only reads or only writes to its internal array during a clock cycle. The data cache may implement several techniques for accelerating access time based upon this feature. For example, the bit lines within the data cache array may be only balanced between accesses instead of precharging (and potentially balancing).
摘要:
A processor employs a first instruction cache, a second instruction cache, and a fetch unit employing a fetch/prefetch method among the first and second instruction caches designed to provide high fetch bandwidth. The fetch unit selects a fetch address based upon previously fetched instructions (e.g. the existence or lack thereof of branch instructions within the previously fetched instructions) from a variety of fetch address sources. Depending upon the source of the fetch address, the fetch address is presented to one of the first and second instruction caches for fetching the corresponding instructions. If the first cache is selected to receive the fetch address, the fetch unit may select a prefetch address for presentation to the second cache. The prefetch address is selected from a variety of prefetch address sources and is presented to the second instruction cache. Instructions prefetched in response to the prefetch address are provided to the first instruction cache for storage. In one embodiment, the first instruction cache may be a low latency, relatively small cache while the second instruction cache may be a higher latency, relatively large cache. Fetch addresses from many of the fetch address sources may be likely to hit in the first instruction cache. Other fetch addresses may be less likely to hit in the first instruction cache. Accordingly, these fetch addresses may be immediately fetched from the second instruction cache, instead of first attempting to fetch from the first instruction cache.
摘要:
A microprocessor employs an L0 cache. The L0 cache is located physically near the execute units of the microprocessor and is relatively small in size as compared to a larger L1 data cache included within the microprocessor. The L0 cache is accessed for those memory operations for which an address is being conveyed to a Load/store unit within the microprocessor during the clock cycle in which the memory operation is selected for access to the L1 data cache. The address corresponding to the memory operation is received by the L0 cache directly from the execute unit forming the address. If a hit in the L0 cache is detected, the L0 cache either forwards data or stores data corresponding to the memory operation (depending upon the type of the memory operation). The memory operation is conveyed to the L1 data cache in parallel with the memory operation accessing the L0 cache. If the memory operation misses in the L0 cache and hits in the L1 data cache, the cache line corresponding to the memory operation may be conveyed to the L0 cache as a line fill.