摘要:
A computer system includes a processor having a cache which includes multiple ports, although a storage array included within the cache may employ fewer physical ports than the cache supports. The cache is pipelined and operates at a clock frequency higher than that employed by the remainder of a microprocessor including the cache. In one embodiment, the cache preferably operates at a clock frequency which is at least a multiple of the clock frequency at which the remainder of the microprocessor operates. The multiple is equal to the number of ports provided on the cache (or the ratio of the number of ports provided on the cache to the number of ports provided internally, if more than one port is supported internally). Accordingly, the accesses provided on each port of the cache during a clock cycle of the microprocessor clock can be sequenced into the cache pipeline prior to commencement of the subsequent clock cycle. In one particular embodiment, the load/store unit of the microprocessor is configured to select only load memory operations or only store memory operations for concurrent presentation to the data cache. Accordingly, the data cache may be performing only reads or only writes to its internal array during a clock cycle. The data cache may implement several techniques for accelerating access time based upon this feature. For example, the bit lines within the data cache array may be only balanced between accesses instead of precharging (and potentially balancing).
摘要:
A prefetch unit for use with a cache subsystem. The prefetch unit includes a stream storage coupled to a prefetch unit. The stream storage may include a plurality of locations configured to store a plurality of entries each corresponding to a respective range of prefetch addresses. The prefetch control may be configured to prefetch an address in response to receiving a cache access request including an address that is within the respective range of prefetch addresses of any of the plurality of entries.
摘要:
A processor may include a stack file and an execution core. The stack file may include an entry configured to store an addressing pattern and a tag. The addressing pattern identifies a memory location within the stack area of memory. The stack file may be configured to link a data value identified by the tag stored in the entry to the speculative result of a memory operation if the addressing pattern of the memory operation matches the addressing pattern stored in the entry. The execution core may be configured to access the speculative result when executing another operation that is dependent on the memory operation.
摘要:
A microprocessor includes a plurality of execution units each configured to execute instructions and an instruction dispatch circuit configured to dispatch instructions for execution by the plurality of execution units. A power management control unit includes a programmable unit for storing information specifying one or more reduced power modes. In the implementation of a first performance throttling technique, the power management control unit may be configured to cause the instruction dispatcher to limit the dispatch of instructions to a limited number of execution units. In the implementation of a second performance throttling technique, the power management control unit may be configured to limit the dispatch of instructions from the instruction dispatcher on every cycle, upon every other cycle, upon every third cycle, upon every fourth cycle, and so on. In the implementation of a third performance throttling technique, the power management control unit may be configured to control the dispatch of instructions from a floating-point scheduler to one or more floating-point execution pipelines.
摘要:
A microprocessor assigns a data transaction type to each instruction. The data transaction type is based upon the encoding of the instruction, and indicates an access mode for memory operations corresponding to the instruction. The access mode may, for example, specify caching and prefetching characteristics for the memory operation. The access mode for each data transaction type is selected to enhance the speed of access by the microprocessor to the data, or to enhance the overall cache and prefetching efficiency of the microprocessor by inhibiting caching and/or prefetching for those memory operations. Instead of relying on data memory access patterns and overall program behavior to determine caching and prefetching operations, these operations are determined on an instruction-by-instruction basis. Additionally, the data transaction types assigned to different instruction encodings may be revealed to program developers. Program developers may use the instruction encodings (and instruction encodings which are assigned to a nil data transaction type causing a default access mode) to optimize use of processor resources during program execution.
摘要:
A data prediction structure is provided for a superscalar microprocessor. The data prediction structure stores base addresses and stride values in a prediction array. The base address and the stride value from a location within the data prediction structure indexed by an instruction address are added to form a data prediction address which is then used to fetch data bytes into a reservation station storing an associated instruction. If the data associated with an operand address calculated by an associated functional unit resides in the reservation station, the clock cycles used to perform the load operation have occurred before the instruction reached the reservation station. Additionally, the base address is updated to the address generated by executing an instruction each time the instruction is executed, and the stride value is updated when the data prediction address is found to be incorrect.
摘要:
A microprocessor including a reorder buffer configured to store speculative register values regarding a particular register is provided. One value is stored for each set of concurrently decoded instructions which are outstanding within the microprocessor, reflecting the updates of each instruction within the set which updates the register. Additionally, the reorder buffer stores a set of constants indicative of the modification of the register by each instruction within the set of concurrently decoded instructions. Recovery from a mispredicted branch instruction (or from an instruction which causes an exception, a TRAP instruction, or an interrupt) may be achieved by utilizing the constants to adjust the result generated for the set of concurrently decoded instructions including the mispredicted branch instruction. The constants generated to indicate the modifications of the particular register may additionally allow multiple instructions having a dependency for the particular register to execute in parallel.
摘要:
A microprocessor may include a retire queue and one or more data speculation verification units. The data speculation verification units are each configured to verify data speculation performed on operations. Each data speculation verification unit generates a respective speculation pointer identifying outstanding operations on which data speculation has been verified by that data speculation verification unit. The retire queue is configured to selectively retire operations dependent on the speculation pointer received from each of the data speculation verification units.
摘要:
A microprocessor may include a scheduler configured to issue operations and a load store unit configured to execute memory operations issued by the scheduler. The load store unit is configured to store information identifying memory operations issued to the load store unit. In response to detection of incorrect data speculation for one of the issued memory operations, the load store unit is configured to replay at least one of the issued memory operations by providing an indication to the scheduler. The scheduler is configured to responsively reissue the memory operations identified by the load store unit.
摘要:
A microprocessor implements an instruction tracing mechanism that saves the state of the microprocessor without special hardware. Prior to the execution of a traced instruction, a trace microcode routine is implemented that saves the state of the microprocessor to external memory. The state information saved by the trace microcode routine varies depending upon the amount of data needed by the end user. After the state of the processor has been saved, the trace instruction is executed. State information that changed during the execution of the trace instruction is saved to memory prior to a subsequent instruction. The trace instruction mechanism advantageously requires minimal special hardware and expedites the saving of the processor state information.