摘要:
A bioabsorbable rivet and pin fastener is formed as an elongated unit that may be used for anchoring, or for attachment of a fixation plate. The rivet has a head mechanically connected to two or more legs that extend generally distally from the head and may flex outwardly from a central rivet axis. The pin is integral with the rivet and oriented along the central axis by a connection such as a web or a plurality of braces, forming an integral, aligned, one-piece assembly that may, for example, be molded as a single piece. The connection breaks under force as the pin is driven into the rivet, so that the pin contacts internal surfaces of the legs and pushes the legs outward into frictional engagement with the surrounding bone. The one-piece assembly may be formed in a gated mold having a central pin with a relief passage that defines the braces between upper and lower portions of the rivet. The braces so formed at the weld line readily part from the mold, and are easily sheared when the pin is advanced during installation of the rivet.
摘要:
A bioabsorbable rivet and pin fastening device that may be used for attachment of a fixation plate to bone is described herein. The rivet having a head that is mechanically connected to two or more legs that extend generally distally from the head. The pin being radially compressible and less compliant than the legs of the rivet. The pin when inserted into the rivet will contact the internal surface of said legs to apply force on said legs in a direction perpendicular to the central axis to frictionally engage with the adjacent bone.
摘要:
The present invention provides a suture clip for attachment to at least one suture comprising a suture clip body having a central longitudinal axis, a proximal end, a distal end, an inner surface, an outer surface and a proximal surface, wherein the inner surface forms a passage that is substantially parallel to the longitudinal axis and is connected to the outer surface by a longitudinal slot which extends from the distal end to the proximal end of the suture clip body and the proximal surface has a major dimension at least five times larger than the diameter of said suture and a collar disposed about said suture clip body engaging the outer surface of the suture clip body to deflect the inner surface to frictionally engage the suture. Also described herein are methods of using this suture clip in surgical procedures.
摘要:
Absorbable, segmented copolymers of aliphatic polyesters based on lactone monomers glycolide, and p-dioxanone are described. The segmented copolymers exhibit a broad range of properties, especially high strength and stiffness, and fast absorption rates and breaking strength retention (BSR) profiles, useful in a variety of medical devices. Most importantly, for suture applications where Vicryl.RTM.-like polyglcolide-polylactide sutures with excellent tensile properties, but shorter BSR profiles than Vicryl.RTM. are needed. The copolymers of the present invention have such properties, making them useful in plastic surgery where faster absorption times would lead to less tissue scarring.
摘要:
An improved process for preparing an aromatic polyanhydride is disclosed. The aromatic polyanhydride is prepared by reacting an aromatic dicarboxylic acid with an anhydride to form an anhydride prepolymer, isolating and purifying the prepolymer, and subjecting the prepolymer to melt polycondensation conditions. The improvement specifically relates to the purification of the acid so it is essentially free of impurities before it is reacted with the anhydride.The polymers prepared from the improved process have higher molecular weights than the molecular weights achieved from the prior art processes, and exhibit outstanding thermal stability and mechanical properties. This combination of properties allows the aromatic polyanhydrides to be melt processed to prepare numerous devices. In addition, these aromatic polyanhydrides are bioabsorbable, and this attribute in combination with its ability for melt processing makes the polyanhydrides particularly well-suited for the preparation of implantable surgical devices such as wound closure devices which are designed to absorb in the body when exposed to moist bodily tissue.
摘要:
Novel semi-crystalline, segmented copolymers of lactide and epsilon-caprolactone exhibiting long term absorption characteristics are disclosed. The novel polymer compositions are useful for long term absorbable meshes, surgical sutures, especially monofilament sutures, and other medical devices.
摘要:
A novel high tensile strength semi-absorbable composite suture with minimized non-absorbable mass. The suture has a core made from a bioabsorbable polymer. The core is covered by a braided sheath. The braided sheath is made from an absorbable yarn and a bioabsorbable yarn. The bioabsorbable yarn is made from a least one filament of a bioabsorbable polymer. The nonabsorbable yarn is made from at least one filament of ultra high molecular weight polyethylene.
摘要:
A biocompatible tissue implant is disclosed. The tissue implant may be bioabsorbable, and is made from a biocompatible polymeric foam. The tissue implant also includes a biocompatible reinforcement member. The polymeric foam and the reinforcement member are soluble in a common solvent.
摘要:
The present invention is directed to stents that are formed into a helical structure having a plurality of coils, a longitudinal axis, an internal longitudinal passage, a distal section and a proximal section having different diameters; where the structure is made from a fiber having a cross-section and including an inner core having an exterior surface made from a biodegradable polymer having a first degradation rate and an outer section made from a blend of a first biodegradable polymer component and a second biodegradable polymer component covering the exterior surface of the inner core and having a second degradation rate; where the second degradation rate is lower than the first degradation rate.
摘要:
A biodegradable stent for implantation into a lumen in a human body. The stent in one embodiment is made from a biodegradable fiber having an inner core and an outer layer. The outer layer is a blend of two polymer components. The inner core has a first degradation rate, and the outer layer has a second degradation rate. The second degradation rate is slower than the first degradation rate. The fiber softens in vivo such that the stent is readily passed from the lumen as a softened fragment or filament after a pre-determined period of time through normal flow of body fluids passing through the lumen.