Abstract:
Flip-flop circuitry having an input configured to receive an input signal and an output configured to deliver an output signal corresponding to the input signal; a clock terminal configured to provide timing signals for reception of the input signal at the input and transmission of the output signal at the output; two on-path inverters connected serially between the input and output, and configured not to respond to the timing signals; and two feedback inverters respectively connected in parallel with the two on-path inverters, the first and second feedback inverters being configured to respond to the timing signals.
Abstract:
A cycle latch includes a control circuit which increases the pull-up rate of a storage node by conditionally discharging the feedback node in a cross-coupled inverter keeper structure. The cycle latch includes an NMOS transistor switch for transferring an input value to the storage node, and two more NMOS transistors connected in series for performing the function of the control circuit. By connecting the storage node to a pre-discharged feedback node and then driving the latch with a low-swing clock, improved performance in terms of delay times, energy consumption, and robustness is achieved.
Abstract:
A cycle latch includes a control circuit which increases the pull-up rate of a storage node by conditionally discharging the feedback node in a cross-coupled inverter keeper structure. The cycle latch includes an NMOS transistor switch for transferring an input value to the storage node, and two more NMOS transistors connected in series for performing the function of the control circuit. By connecting the storage node to a pre-discharged feedback node and then driving the latch with a low-swing clock, improved performance in terms of delay times, energy consumption, and robustness is achieved.
Abstract:
Described is an apparatus which comprises: a clamp coupled between a first power supply and a second power supply; and a circuit to operate with the second power supply, wherein the clamp is operable to adjust the second power supply when the apparatus enters a low power mode.
Abstract:
An integrated circuit (IC) package is disclosed. The IC package includes a first die; and a second die bonded to the CPU die in a three dimensional packaging layout.
Abstract:
A system may include acquisition of a supply voltage information representing past supply voltages supplied to an electrical component, acquisition of a temperature information representing past temperatures of the electrical component, and control of a performance characteristic of the electrical component based on the supply voltage information and the temperature information. Some embodiments may further include determination of a reliability margin based on the supply voltage information, the temperature information, and on a reliability specification of the electrical component, and change of the performance characteristic based on the reliability margin.
Abstract:
Embodiments of the present invention provide a method, apparatus and system for dynamically adjusting one or more performance-related parameters of a processor core based on at least one operation parameter related to an operating condition of the processor core.
Abstract:
A bias generator is provided that includes a central bias generator to provide a first bias voltage and a local bias generator to receive the first bias voltage and to provide a second bias voltage. The central bias generator may include a replica bias generator circuit substantially corresponding to the local bias generator.
Abstract:
An approach for power reduction of an integrated circuit device. In response to detecting a change in an activity factor associated with an integrated circuit device from a first activity factor to a second activity factor, a supply voltage and a body bias associated with the integrated circuit device are adjusted based on the second activity factor to reduce power consumption. For one aspect, the supply voltage and body bias are adjusted to maintain a substantially constant operating frequency for the integrated circuit device.
Abstract:
According to some embodiments, provided are a first signal line, the first signal line coupled to a first repeater, the first repeater to convert a first signal from a received signal level to an output signal level, the first repeater to convert from a first signal level to a second signal level slower than from the second signal level to the first signal level, and a second signal line adjacent to the first signal line, the second signal line coupled to a second repeater adjacent to the first repeater, the second repeater to convert a second signal from a second received signal level to a second output signal level, the second repeater to convert from the first signal level to the second signal level slower than from the second signal level to the first signal level, wherein the received signal level is substantially equivalent to the second output signal level and wherein the second received signal level is substantially equivalent to the output signal level.