摘要:
This invention is a semiconductor vertical cavity surface emitting laser comprising a lasing cavity with an active layer, a bottom (rear) mirror and a top (front) mirror, and a front and rear electrodes for applying excitation current in direction substantially parallel to the direction of optical propagation. In accordance with this invention the front mirror comprises a thin, semitransparent metal layer which also acts as the front electrode. The metal layer is upon a highly doped layer forming a non-alloyed ohmic contact. The metal is selected from Ag and Al and is deposited in thickness ranging from 5 to 55 nm. The VCSEL is a semiconductor device wherein the semiconductor material is a III-V or II-VI compound semiconductor. For a VCSEL with GaAs active layer, the light output from the front metal mirror/electrode side yields a high external differential quantum efficiency as high as 54 percent. This is the highest quantum efficiency obtained in VCSEL structures. Quantum efficiencies on the oder of 10 to 30 percent are typical for prior art VCSEL structures. The VCSEL is suitable for fabrication utilizing planar technology.
摘要:
Optically transparent and electrically conductive cadmium tin oxide or indium tin oxide is employed in vertical cavity surface emitting lasers for vertical current injection. Continuous wave lasing at room temperature is achieved in GaAs/AlGaAs quantum well lasers. Devices with a 10 .mu.m optical window which also serves as a vertical current injection inlet give lasing threshold currents as low as 3.8 mA. The differential series resistance is (350-450) .OMEGA. with a diode voltage of (5.1-5.6) V at the lasing threshold. Far field pattern of the laser emission is Gaussian-like with a full width at half maximum of 7.degree..
摘要:
This invention embodies p-n junction devices comprising Group III-V compound semiconductors in which the p or n or both p and n regions are formed by a superlattice selectively doped with an amphoteric Group IV element dopant selected from carbon, germanium and silicone. The superlattice includes a plurality of periods, each including two layers. Depending on the conductivity type, only one of the layers in the periods forming the superlattice region of said type of conductivity is selectively doped with said dopant, leaving the other layer in these periods undoped. The superlattice is formed by Molecular Beam Epitaxy technique, and the dopant is incorporated into respective layers by delta-doping as in a sheet centrally deposited between monolayers forming the respective layers of the period. Each period includes 5 to 15 monolayers deposited in the two layers in a numerical ratio corresponding to a cation compositional ratio in the compound semiconductor. Low growth temperatures, e.g. ranging from 410.degree. to 450.degree. C. lead to mirror-like surfaces. For a compound semiconductor Ga.sub.0.47 In.sub.0.53 As, the GaAs/InAs ordered superlattices with eight monolayers per period are grown in a ratio of 0.47/0.53. At free carrier concentrations of 10.sup.16 cm.sup. -3, carrier mobilities of 200 and 2300 cm.sup.2 /Vs for p-type and n-type are obtained with carbon as the amphoteric dopant.
摘要:
It has been found that in the preparation of devices having repetitive layers, such as distributed Bragg reflectors, the dopant introduced during processing redistributes itself in a deleterious manner. In particular, this dopant through various effects segregates and diffuses from one layer into the interface region of the second layer. As a result, properties such as electrical resistance of the structure become unacceptably high. By utilizing various expedients such as carbon doping this segregation and its associated deleterious effects are avoided.
摘要:
A process is described for making semiconductor devices with highly controlled doping profiles. The process involves minimizing or eliminating segregation effects caused by surface electric fields created by Fermi-level pinning. These electric fields act on dopant ions and cause migration from the original deposition site of the doplant ions. Dopant ions are effectively shielded from the surface electric fields by illumination of the growth surfaces and by background doping. Also, certain crystallographic directions in certain semiconductors do not show Fermi-level pinning and lower growth temperatures retard or eliminate segregation effects. Devices are described which exhibit enhanced characteristics with highly accurate and other very narrow doping profiles.
摘要:
A new electro-optic sampling probe with femtosecond resolution suitable for ultra-fast electro-optic sampling. The new probe is several times thinner and has a dielectric constant four times less than the best reported conventional bulk LiTaO.sub.3 probes. In addition, the ultimate bandwidth is 50 percent greater than an equivalent LiTaO.sub.3 probe. The probe is a thin film of Al.sub.x Ga.sub.1-x As used in both total internally reflecting and free-standing geometries. Here x is chosen for sufficient transmission of the crystal to the wavelength of the laser source being used for electro-optic sampling. The thickness of the film is a small fraction of the thickness of prior art probes and is chosen, for speed and sensitivity of electro-optic sampling, to be thin compared to the spatial extent of the laser pulse. The thin film probe eliminates many of the problems associated with the use of bulk crystals as electro-optic sensors.