摘要:
It has been found that in the preparation of devices having repetitive layers, such as distributed Bragg reflectors, the dopant introduced during processing redistributes itself in a deleterious manner. In particular, this dopant through various effects segregates and diffuses from one layer into the interface region of the second layer. As a result, properties such as electrical resistance of the structure become unacceptably high. By utilizing various expedients such as carbon doping this segregation and its associated deleterious effects are avoided.
摘要:
Optically transparent and electrically conductive cadmium tin oxide or indium tin oxide is employed in vertical cavity surface emitting lasers for vertical current injection. Continuous wave lasing at room temperature is achieved in GaAs/AlGaAs quantum well lasers. Devices with a 10 .mu.m optical window which also serves as a vertical current injection inlet give lasing threshold currents as low as 3.8 mA. The differential series resistance is (350-450) .OMEGA. with a diode voltage of (5.1-5.6) V at the lasing threshold. Far field pattern of the laser emission is Gaussian-like with a full width at half maximum of 7.degree..
摘要:
This invention is a semiconductor vertical cavity surface emitting laser comprising a lasing cavity with an active layer, a bottom (rear) mirror and a top (front) mirror, and a front and rear electrodes for applying excitation current in direction substantially parallel to the direction of optical propagation. In accordance with this invention the front mirror comprises a thin, semitransparent metal layer which also acts as the front electrode. The metal layer is upon a highly doped layer forming a non-alloyed ohmic contact. The metal is selected from Ag and Al and is deposited in thickness ranging from 5 to 55 nm. The VCSEL is a semiconductor device wherein the semiconductor material is a III-V or II-VI compound semiconductor. For a VCSEL with GaAs active layer, the light output from the front metal mirror/electrode side yields a high external differential quantum efficiency as high as 54 percent. This is the highest quantum efficiency obtained in VCSEL structures. Quantum efficiencies on the oder of 10 to 30 percent are typical for prior art VCSEL structures. The VCSEL is suitable for fabrication utilizing planar technology.
摘要:
This invention embodies p-n junction devices comprising Group III-V compound semiconductors in which the p or n or both p and n regions are formed by a superlattice selectively doped with an amphoteric Group IV element dopant selected from carbon, germanium and silicone. The superlattice includes a plurality of periods, each including two layers. Depending on the conductivity type, only one of the layers in the periods forming the superlattice region of said type of conductivity is selectively doped with said dopant, leaving the other layer in these periods undoped. The superlattice is formed by Molecular Beam Epitaxy technique, and the dopant is incorporated into respective layers by delta-doping as in a sheet centrally deposited between monolayers forming the respective layers of the period. Each period includes 5 to 15 monolayers deposited in the two layers in a numerical ratio corresponding to a cation compositional ratio in the compound semiconductor. Low growth temperatures, e.g. ranging from 410.degree. to 450.degree. C. lead to mirror-like surfaces. For a compound semiconductor Ga.sub.0.47 In.sub.0.53 As, the GaAs/InAs ordered superlattices with eight monolayers per period are grown in a ratio of 0.47/0.53. At free carrier concentrations of 10.sup.16 cm.sup. -3, carrier mobilities of 200 and 2300 cm.sup.2 /Vs for p-type and n-type are obtained with carbon as the amphoteric dopant.
摘要:
A process is described for making semiconductor devices with highly controlled doping profiles. The process involves minimizing or eliminating segregation effects caused by surface electric fields created by Fermi-level pinning. These electric fields act on dopant ions and cause migration from the original deposition site of the doplant ions. Dopant ions are effectively shielded from the surface electric fields by illumination of the growth surfaces and by background doping. Also, certain crystallographic directions in certain semiconductors do not show Fermi-level pinning and lower growth temperatures retard or eliminate segregation effects. Devices are described which exhibit enhanced characteristics with highly accurate and other very narrow doping profiles.
摘要:
This invention embodies single mirror light-emitting diodes (LEDs) with enhanced intensity. The LEDs are Group III-V and/or II-IV compound semiconductor structures with a single metallic mirror. The enhanced intensity is obtained by placing an active region of the LED having from two to ten, preferably from four to eight, quantum wells at an anti-node of the optical node of the device created by a nearby metallic mirror. Such multiquantum well LED structures exhibit enhanced efficiencies approaching that of a perfect isotropic emitter.
摘要:
This invention embodies a Vertical Cavity Surface Emitting Laser with a top mirror comprising at least one pair of quarterwave layers, each pair consisting of a low index of refraction layer and a high index of refraction layer, the high index of refraction layer being a semiconductor chosen from GaP and ZnS and the low index of refraction layer being chosen from borosilicate glass (BSG) CaF.sub.2,MgF.sub.2 and NaF. Especially useful in vertical cavity surface emitting lasers are mirrors formed by a stack of a plurality of pairs of GaP/BSG or ZnS/CdF.sub.2. Such mirrors have a high reflectivity characteristics required for an efficient operation of the laser. The GaP/BSG or ZnS/CaF.sub.2 mirror structure represents a considerable improvement over previous designs for VCSELs in terms of ultimate reflectivity, low loss, and post growth processing compatibility.
摘要:
A field-effect transistor is created on a GaAs semi-insulating substrate using molecular beam epitaxy by fabricating a delta-doped monolayer with a silicon dopant between two undoped GaAs layers grown over the semi-insulating substrate. A plurality of delta-doped monolayers are grown over the surface of the upper undoped layer interleaved with layers of GaAs having a thickness equal to or less than the tunneling width of electrons in GaAs. A channel is etched through the plurality of delta-doped monolayers to permit a gate electrode to contact the upper undoped GaAs layer. Source and drain electrodes are deposited over the delta-doped monolayers on each side of the channel.
摘要:
This invention embodies an optical device with a Fabry-Perot cavity formed by two reflective mirrors and an active layer which is doped with a rare earth element selected from lanthanide series elements with number 57 through 71. The thickness of the active layer being a whole number multiple of .lambda./2 wherein .lambda. is the operating, or emissive, wavelength of the device, said whole number being one of the numbers ranging from 1 to 5, the fundamental mode of the cavity being in resonance with the emission wavelength of said selected rare earth element. Cavity-quality factors exceeding Q=300 and finesses of 73 are achieved with structures consisting of two Si/SiO.sub.2 distributed Bragg reflector (DBR) mirrors and an Er-implanted (.lambda./2) SiO.sub.2 active region. The bottom DBR mirror consists of four pairs and the upper DBR mirror consists of two-and-a half pairs of quarterwave (.lambda./4) layers of Si and SiO.sub.2. Photoluminescence at room temperature reveals a drastic enhancement of the luminescence intensity of the cavity emitted along the optical axis of the cavity versus the luminescence without the top mirror. The luminescence intensity of the cavity is typically 1-2 orders of magnitudes higher as compared to structures without a cavity. Furthermore, since the emission wavelength and the intensity decrease for off-normal emission angles, the change in emission wavelength can be quantitatively described by assuming that the on-axis component of the optical wave is resonant with the cavity.
摘要:
Optical systems which include a particular type of wavelength-tunable semiconductor laser are disclosed. Significantly, the active layer of the laser includes a doping superlattice layer. Even more significantly, wavelength-tunability is achieved by nonuniformly, optically and/or electrically pumping the laser.