摘要:
Disclosed herein is a method of fabricating a semiconductor device having a metal fuse. The method includes forming a plate electrode on a semiconductor substrate, forming an interlayer insulating layer on the plate electrode, forming a barrier metal layer containing either silicon or aluminum, a first metal layer and an antireflection layer containing either silicon or aluminum sequentially from bottom to top on the interlayer insulating layer. The method also includes patterning the antireflection layer, the first metal layer, and the barrier metal layer to form a first metal interconnection. The method also includes forming a fuse with the same material and structure as those of the first metal interconnection while forming the first metal interconnection. The method further includes forming an inter-metal dielectric layer on the first metal interconnection and the fuse, forming a second metal interconnection on the inter-metal dielectric layer, forming a passivation layer on the second metal interconnection, and forming a fuse box in the passivation layer.
摘要:
A method for forming a capacitor includes forming a concave mold over a semiconductor substrate. A storage node is formed on the concave mold. A dielectric layer including a zirconium oxide (ZrO2) layer is deposited over the storage node at a first temperature. A radical pile-up treatment on the dielectric layer is performed in an atmosphere including radicals at a second temperature higher than the first temperature to induce crystallization of the dielectric layer. A plate node is formed over the dielectric layer.
摘要:
A phase change memory device includes a semiconductor substrate, a first conductive pattern formed on the semiconductor substrate, a second conductive pattern contacting an upper surface of the first conductive pattern and having a diameter less than a diameter of the first conductive pattern, and a phase change material layer contacting the second conductive pattern.
摘要:
A phase change memory device and a method for manufacturing the same. The method includes the steps of defining bottom electrode contact holes by removing portions of an insulation layer, to expose bottom electrodes, on a semiconductor substrate on which the bottom electrodes and the insulation layer are sequentially formed; forming amorphous silicon spacers on inner sidewalls of the bottom electrode contact holes; and forming bottom electrode contacts in the bottom electrode contact holes.
摘要:
The manufacturing of a phase change memory device that includes a switching device, a bottom electrode contact in contact with the switching device and a porous spacer formed on the bottom electrode contact. The formed bottom electrode contact exposes a switching device on a semiconductor substrate which the switching device is formed in, forming an insulating layer on a resultant structure of the semiconductor substrate including the bottom electrode contact by using an insulating compound having materials with different atomic sizes, and forming an insulating spacer within the bottom electrode contact hole by selectively etching the insulating layer.
摘要:
Methods of manufacturing a phase-change memory device and a semiconductor device are provided. The method of manufacturing the phase-change memory device includes forming a switching device layer, an ohmic contact layer, and a hard mask layer on a semiconductor substrate, patterning the hard mask layer to form a hard mask pattern, etching the ohmic layer and the switching layer using the hard mask pattern to form a pattern structure including an ohmic contact pattern, a switching device pattern, and the hard mask pattern, selectively oxidizing a surface of the pattern structure, forming an insulating layer to bury the pattern structure, and selectively removing the hard mask pattern other than the oxidized surface thereof to form a contact hole.
摘要:
A phase change memory device is presented that has a lower electrode contact that has a gradient resistance profile ranging from a lower resistive lower end to a higher resistive upper end. The phase change memory device includes a semiconductor substrate, a lower electrode contact, and a phase change pattern. The semiconductor substrate has a switching device. The lower electrode contact is formed on the switching device and has a specific resistance which gradually increases from a lower part to an upper part of the lower electrode contact. The phase change pattern layer is formed on the lower electrode contact.
摘要:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
摘要:
Methods of manufacturing a phase-change memory device and a semiconductor device are provided. The method of manufacturing the phase-change memory device includes forming a switching device layer, an ohmic contact layer, and a hard mask layer on a semiconductor substrate, patterning the hard mask layer to form a hard mask pattern, etching the ohmic layer and the switching layer using the hard mask pattern to form a pattern structure including an ohmic contact pattern, a switching device pattern, and the hard mask pattern, selectively oxidizing a surface of the pattern structure, forming an insulating layer to bury the pattern structure, and selectively removing the hard mask pattern other than the oxidized surface thereof to form a contact hole.
摘要:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.