Abstract:
A refrigerator includes an ice maker positioned in the refrigerator and configured to make ice. The refrigerator also includes a plate positioned at an open side of the ice making tray and configured to reduce water overflow. The refrigerator further includes a cool air inlet passage configured to allow cool air to be introduced to an area inside of the plate. In addition, the refrigerator includes a cool air outlet passage that is separate from the cool air inlet passage, and configured to allow release of cool air from the area inside of the plate to an exterior of the plate.
Abstract:
A refrigerator and an ice level sensing apparatus are provided. The refrigerator may include a main body, and an ice level sensing apparatus including an optical element for sending or receiving a signal, and an alignment device for aligning and maintaining alignment of the optical element in a preset direction. The sensing apparatus may sense whether an ice storage container in which ice cubes made by an ice maker is at a full ice level. The optical element may be aligned at a preset position, thus preventing movement of the optical element, resulting in improved reliability of the sensing apparatus.
Abstract:
The present invention discloses a shelf of a wine refrigerator including a frame disposed inside a chill room in the horizontal direction, a plurality of support wires formed long inside the frame in the forward and backward directions of the frame at predetermined intervals in the right and left directions of the frame, and a plurality of elastic support members inserted onto each support wire, for elastically supporting wine bottles.
Abstract:
A thin film transistor (TFT) array substrate is provided. The thin film transistor (TFT) array substrate includes an insulating substrate, an oxide semiconductor layer formed on the insulating substrate and including an additive element, a gate electrode overlapping the oxide semiconductor layer, and a gate insulating layer interposed between the oxide semiconductor layer and the gate electrode, wherein the oxygen bond energy of the additive element is greater than that of a base element of the oxide semiconductor layer.
Abstract:
A display substrate includes; a base substrate, a deformation preventing layer disposed on a lower surface of the base substrate, wherein the deformation preventing layer applies a force to the base substrate to prevent the base substrate from bending, a gate line disposed on an upper surface of the base substrate, a data line disposed on the base substrate, and a pixel electrode disposed on the base substrate.
Abstract:
A method of detecting an amount of ice stored in a storage bin made by an ice maker of a refrigerator, the method comprises applying heat to the ice detecting sensor of the ice maker, detecting an amount stored in the storage bin, and controlling heat application according to the detected amount. The ice maker has an ice detecting sensor attached thereto. A sensor heater provides the heat.
Abstract:
Exemplary embodiments of the present invention provide a display substrate including a gate electrode, an oxide semiconductor pattern, a source electrode, a drain electrode, and an etch stop pattern. The gate electrode may be disposed on a base substrate. The oxide semiconductor pattern may be disposed over the gate electrode. The source electrode may be disposed on the oxide semiconductor pattern. The drain electrode may be disposed on the oxide semiconductor pattern and spaced apart from the source electrode. The etch stop pattern may be disposed over the gate electrode, the etch stop pattern may be overlapping a space between the source electrode and the drain electrode and may include a metal oxide. The reliability of the display substrate may, therefore, be improved.
Abstract:
A liquid crystal display (LCD) device and a method of manufacturing the same are disclosed. The liquid crystal display device includes: a plurality of cell regions including a first substrate upon which a pixel electrode is formed, a second substrate upon which a common electrode is formed, and a liquid crystal layer interposed between the first substrate and the second substrate, and a cutting region formed between the plurality of cell regions, and including the first substrate and the second substrate extended from the plurality of cell regions, and at least one peripheral spacer interposed between the first substrate and the second substrate, where the peripheral spacer contacts at least one of the first and second substrates.
Abstract:
A method of manufacturing a quantum dot, the method including: mixing of a Group II precursor and a Group III precursor in a solvent to prepare a first mixture; heating the first mixture at a temperature of about 200° C. to about 350° C.; adding a Group V precursor and a Group VI precursor to the first mixture while maintaining the first mixture at the temperature of about 200° C. to about 350° C. to prepare a second mixture; and maintaining the second mixture at the temperature of about 200° C. to about 350° C. to form a quantum dot.
Abstract:
A thin film transistor panel includes; an insulating substrate, a gate line including a gate electrode disposed on the insulating substrate, a gate insulating layer disposed on the gate electrode, a semiconductor layer disposed on the gate insulating layer, the semiconductor layer including a sidewall, a data line including a source electrode disposed on the semiconductor layer, a drain electrode disposed substantially opposite to and spaced apart from the source electrode, a first protective film disposed on the data line, the first protective film including a sidewall, a second protective film disposed on the first protective film and including a sidewall, and a pixel electrode electrically connected to the drain electrode, wherein the sidewall of the second protective film is disposed inside an area where the sidewall of the first protective film is disposed, and the source electrode and the drain electrode cover the sidewall of the semiconductor layer.