Abstract:
An etchant composition is provided. The etchant composition includes about 40 to about 65 wt % of phosphoric acid, about 2 to about 5 wt % of nitric acid, about 2 to about 20 wt % of acetic acid, about 0.1 to about 2 wt % of a compound containing phosphate, about 0.1 to about 2 wt % of a compound simultaneously containing an amino group and a carboxyl group, and a remaining weight percent of water for the total weight of the composition.
Abstract:
A method for manufacturing a thin film transistor array panel, including: sequentially forming a first silicon layer, a second silicon layer, a lower metal layer, and an upper metal layer on a gate insulating layer and a gate line; forming a first film pattern on the upper metal layer; forming a first lower metal pattern and a first upper metal pattern that includes a protrusion, by etching the upper metal layer and the lower metal layer; forming first and second silicon patterns by etching the first and second silicon layers; forming a second film pattern by ashing the first film pattern; forming a second upper metal pattern by etching the first upper metal pattern; forming a data line and a thin film transistor by etching the first lower metal pattern and the first and second silicon patterns; and forming a passivation layer and a pixel electrode on the resultant.
Abstract:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
Abstract:
Exemplary embodiments of the present invention provide a metal wiring etchant. A metal wiring etchant according to an exemplary embodiment of the present invention includes ammonium persulfate, an organic acid, an ammonium salt, a fluorine-containing compound, a glycol-based compound, and an azole-based compound.
Abstract:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
Abstract:
A composition for removing a photoresist pattern includes about 5 percent by weight to about 20 percent by weight of an aminoethoxy ethanol, about 2 percent by weight to about 10 percent by weight of a polyalkylene oxide, about 10 percent by weight to about 30 percent by weight of a glycol ether compound, and a remainder of an aprotic polar solvent including a nitrogen. Thus, the photoresist pattern can be easily removed from a substrate, thereby improving the removing ability of the composition. In addition, a residual amount of the photoresist pattern may be minimized, thereby improving the reliability of removing the photoresist pattern.
Abstract:
A thin film transistor array panel and a method of manufacturing the same are provided according to one or more embodiments. In an embodiment, a method includes: forming a gate line on an insulation substrate; stacking a gate insulating layer, an oxide semiconductor layer, a first barrier layer, and a first copper layer on the gate line; performing a photolithography process on the oxide semiconductor layer, the first barrier layer, and the first copper layer and forming a data line including a source electrode, a drain electrode, and an oxide semiconductor pattern; forming a passivation layer having the contact hole that exposes the drain electrode on the data line and the drain electrode; and forming a pixel electrode that is connected to the drain electrode through the contact hole on the passivation layer, wherein the forming of a data line, a drain electrode, and an oxide semiconductor pattern includes wet etching the first copper layer and then wet etching the first barrier layer and the oxide semiconductor layer.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
Abstract:
A composition for a photoresist stripper and a method of fabricating a thin film transistor array substrate are provided according to one or more embodiments. In one or more embodiments, the composition includes about 5-30 weight % of a chain amine compound, about 0.5-10 weight % of a cyclic amine compound, about 10-80 weight % of a glycol ether compound, about 5-30 weight % of distilled water, and about 0.1-5 weight % of a corrosion inhibitor.
Abstract:
In the manufacturing process of the thin film transistor array panel according to an exemplary embodiment of the present invention using three masks, the metal oxide semiconductor or the transparent conductive oxide is used, thereby executing an efficient lift-off process.