摘要:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, an apparatus for substrate processing includes a process chamber having a chamber body defining an inner volume; and a silicon containing coating disposed on an interior surface of the chamber body, wherein an outer surface of the silicon containing coating is at least 35 percent silicon (Si) by atom. In some embodiments, a method for forming a silicon containing coating in a process chamber includes providing a first process gas comprising a silicon containing gas to an inner volume of the process chamber; and forming a silicon containing coating on an interior surface of the process chamber, wherein an outer surface of the silicon containing coating is at least 35 percent silicon.
摘要:
In one aspect of the invention, a method for the improved operation of an electronic device manufacturing system is provided. The method includes providing information to an interface coupled to an electronic device manufacturing system having parameters, processing the information to predict a first parameter, and providing an instruction related to at least a second parameter of the electronic device manufacturing system wherein the instruction is based on the predicted first parameter. Numerous other aspects are provided.
摘要:
In one aspect, improved methods and apparatus for pressure control in an electronic device manufacturing system are provided. The method includes acquiring information related to a current state of the electronic device manufacturing system, determining a desired value of a first parameter of the electronic device manufacturing system based on the acquired information and adjusting at least one parameter of a pump to obtain the desired value of the first parameter of the electronic device manufacturing system.
摘要:
Embodiments herein provide waste abatement apparatuses and methods for treating waste solutions derived from depleted or used plating solutions, such as from an electroless deposition process or an electrochemical plating process. The waste abatement systems and processes may be used to treat the waste solutions by lowering the concentration of, if not completely removing, metal ions or reducing agents that are dissolved within the waste solution. In one embodiment of a demetallization process, a waste solution may be exposed to a heating element (e.g., copper coil) contained within an immersion tank. In another embodiment, the waste solution may be exposed to a catalyst having high surface area (e.g., steel wool or other metallic wool) within an immersion tank. In another embodiment, the waste solution may be flowed through a removable, catalytic conduit (e.g., copper tubing) having an internal catalytic surface.
摘要:
In one aspect, improved methods and apparatus for pressure control in an electronic device manufacturing system are provided. The method includes acquiring information related to a current state of the electronic device manufacturing system, determining a desired value of a first parameter of the electronic device manufacturing system based on the acquired information and adjusting at least one parameter of a pump to obtain the desired value of the first parameter of the electronic device manufacturing system.
摘要:
Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting ions into a substrate includes providing a substrate into a processing chamber, generating a plasma from a gas mixture including a reacting gas and a etching gas in the chamber, adjusting the ratio between the reacting gas and the etching gas in the supplied gas mixture and implanting ions from the plasma into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a halogen containing reducing gas into the chamber, forming a plasma from the gas mixture, gradually increasing the ratio of the etching gas in the gas mixture, and implanting ions from the gas mixture into the substrate.
摘要:
Embodiments herein provide waste abatement apparatuses and methods for treating waste solutions derived from depleted or used plating solutions, such as from an electroless deposition process or an electrochemical plating process. The waste abatement systems and processes may be used to treat the waste solutions by lowering the concentration of, if not completely removing, metal ions or reducing agents that are dissolved within the waste solution. In one embodiment of a demetallization process, a waste solution may be exposed to a heating element (e.g., copper coil) contained within an immersion tank. In another embodiment, the waste solution may be exposed to a catalyst having high surface area (e.g., steel wool or other metallic wool) within an immersion tank. In another embodiment, the waste solution may be flowed through a removable, catalytic conduit (e.g., copper tubing) having an internal catalytic surface.
摘要:
Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting ions into a substrate includes providing a substrate into a processing chamber, generating a plasma from a gas mixture including a reacting gas and a etching gas in the chamber, adjusting the ratio between the reacting gas and the etching gas in the supplied gas mixture and implanting ions from the plasma into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a halogen containing reducing gas into the chamber, forming a plasma from the gas mixture, gradually increasing the ratio of the etching gas in the gas mixture, and implanting ions from the gas mixture into the substrate.
摘要:
Methods of nitridation and selective oxidation are provided herein. In some embodiments, a method of selectively forming an oxide layer on a semiconductor structure disposed on a substrate support in a process chamber is provided, wherein the semiconductor structure comprising a substrate, one or more metal-containing layers, and one or more non metal-containing layers. The method may include forming a first remote plasma from a first process gas comprising oxygen; and exposing the semiconductor structure to a reactive species formed from the first remote plasma to selectively form an oxide layer on the one or more non metal-containing layers, wherein a density of the reactive species is about 109 to about 1017 molecules/cm3 and wherein a pressure in the chamber during exposure of the first layer is about 5 mTorr to about 3 Torr.
摘要翻译:本文提供了氮化和选择性氧化的方法。 在一些实施例中,提供了一种在处理室中设置在衬底支架上的半导体结构上选择性地形成氧化物层的方法,其中半导体结构包括衬底,一个或多个含金属层和一个或多个非金属 包含层。 该方法可以包括从包含氧的第一工艺气体形成第一远程等离子体; 以及将所述半导体结构暴露于由所述第一远程等离子体形成的反应物质以在所述一个或多个非金属层上选择性地形成氧化物层,其中所述反应性物质的密度为约109至约1017分子/ cm 3,并且其中 第一层暴露期间室内的压力约为5mTorr至约3Torr。
摘要:
A substrate processing apparatus has a process chamber and an effluent treatment reactor. The process chamber has a substrate support, a process gas supply, a gas energizer, and an exhaust conduit. The effluent treatment reactor has an effluent inlet to receive effluent from the exhaust conduit of the process chamber, a plasma cell having one or more electrodes electrically connected to a voltage source adapted to electrically bias the electrodes to couple energy to effluent received in the plasma cell, a scrubbing cell coaxially exterior to the plasma cell, the scrubbing cell having a scrubbing fluid inlet to introduce scrubbing fluid into effluent in the scrubbing cell and a scrubbing fluid outlet, and an effluent outlet to release the treated effluent.