摘要:
A process for producing a honeycomb ceramic article includes providing a green honeycomb body including ceramic-forming materials and organic pore forming materials and subjecting the green honeycomb body to a firing cycle in a kiln in which steam is added to the kiln atmosphere in an amount from about 10% to about 100%, based on volume. Also provided are ceramic articles produced by the process.
摘要:
A process for producing a honeycomb ceramic article includes providing a green honeycomb body including ceramic-forming materials and organic pore forming materials and subjecting the green honeycomb body to a firing cycle in a kiln in which steam is added to the kiln atmosphere in an amount from about 10% to about 100%, based on volume. Also provided are ceramic articles produced by the process.
摘要:
Disclosed are ceramic honeycomb articles, which are composed predominately of a crystalline phase cordierite composition. The ceramic honeycomb articles possess a microstructure characterized by a unique combination of relatively high porosity between 42% and 56%, and relatively narrow pore size distribution wherein less than 15% of the total porosity has a pore diameter less than 10 μm, less than 20% of the total porosity has a pore diameter greater than 30 μm, and dbreadth≦1.50 wherein dbreadth=(d90−d10)/d50. The articles exhibits high thermal durability and high filtration efficiency coupled with low pressure drop across the filter. Such ceramic articles are particularly well suited for filtration applications, such as diesel exhaust filters or DPFs. Also disclosed is a method for manufacturing the ceramic article wherein the pore former is preferably potato starch having a median particle diameter greater than 40 μm.
摘要:
A method is provided for making a porous inorganic membrane by using a mixture of an inorganic material, organic polymer particles and a solvent to form a slurry, the particles being non-spherical, distributing the slurry onto a surface, drying the slurry to remove the solvent and firing the dried slurry to produce the porous inorganic membrane. Examples of organic polymer particles include particles of acrylic. A substrate with a porous inorganic membrane disposed on the substrate is also provided, the inorganic membrane having an average thickness of from about 0.5 micron to about 30 microns, a porosity of from about 30% to about 65%, a median pore size (d50) of from about 0.01 micron to about 1 micron, and a value of (d90−d10)/d50 less than about 2, as measured by mercury porosimetry. An example of a substrate includes an inorganic porous support.
摘要:
A method is provided for making a porous inorganic membrane by using a mixture of an inorganic material, organic polymer particles and a solvent to form a slurry, the particles being non-spherical, distributing the slurry onto a surface, drying the slurry to remove the solvent and firing the dried slurry to produce the porous inorganic membrane. Examples of organic polymer particles include particles of acrylic. A substrate with a porous inorganic membrane disposed on the substrate is also provided, the inorganic membrane having an average thickness of from about 0.5 micron to about 30 microns, a porosity of from about 30% to about 65%, a median pore size (d50) of from about 0.01 micron to about 1 micron, and a value of (d90−d10)/d50 less than about 2, as measured by mercury porosimetry. An example of a substrate includes an inorganic porous support.
摘要:
An external cavity tunable laser includes a gain median module to generate a broadband optical spectrum covering a predetermined wavelength range; a collimate lens turning a diverging beam into a collimated beam; a pair of etalons to tune frequency; an actuator to adjust an external cavity optical pathlength; a bandpass filter to block one or more frequencies outside the predetermined wavelength range; a beam splitter to split a percentage of the beam to a photodetector; a reflection mirror for feedback to gain median waveguide; an isolator for preventing reflecting light back to the external cavity; and a hermetically sealed housing less than 0.15 cubic centimeters.
摘要:
FIG. 1 is an exploded view of a storage case for feeding bottle cleaning tools showing my new design; FIG. 2 is a front elevational view thereof; FIG. 3 is a rear elevational view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a perspective view thereof; FIG. 7 is another perspective view thereof; FIG. 8 is a perspective view of the top cover alone while other components are omitted for the purpose of clearer illustration; and, FIG. 9 is another perspective view of the top cover alone while other components are omitted for the purpose of clearer illustration. The broken lines in FIGS. 1-8 illustrate portions of the storage case for feeding bottle cleaning tools. The broken lines in FIG. 9 illustrating a strap and cleaning tools represent environment. None of the broken lines form part of the claimed design.
摘要:
The present disclosure relates to the field of lamps, and in particular to a plug-in lamp. The plug-in lamp includes a lamp base and a light source assembly. The lamp base includes a lamp base housing and a lamp base cover. The lamp base cover is capped on the top of the lamp base housing, connecting wires between the lamp base housing and the lamp base cover are contacted with ends of connecting terminals to realize electrical connection, and plug-in male terminals are respectively plugged into two plug-in holes to realize electrical connection. According to the present disclosure, the structural design is simple and reasonable, and the production efficiency is greatly improved.
摘要:
Disclosed are cordierite bodies having relatively high porosity and controlled pore size. The porous cordierite bodies generally include a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite bodies.
摘要:
Methods for fabricating a nanopillared substrate surface include applying a polymer solution containing an amphiphilic block copolymer and a hydrophilic homopolymer to a substrate surface. The amphiphilic block copolymer and the hydrophilic homopolymer in the polymer solution self-assemble on the substrate surface to form a self-assembled polymer layer having hydrophobic domains adjacent to the substrate surface and hydrophilic domains extending into the self-assembled polymer layer. At least a portion of the hydrophilic domains may be removed to form a plurality of pores in the exposed surface of the self-assembled polymer layer. A protective layer may be deposited on the exposed surface as a mask for etching through the plurality of pores to form through-holes. A nanopillar-forming material may be deposited onto the substrate surface via the through-holes. Then, the remaining portion of the self-assembled polymer layer may be removed to expose a nanopillared substrate surface.